Simińska-Stanny Julia, Nicolas Lise, Chafai Adam, Jafari Hafez, Hajiabbas Maryam, Dodi Gianina, Gardikiotis Ioannis, Delporte Christine, Nie Lei, Podstawczyk Daria, Shavandi Amin
Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium.
European School of Materials Science and Engineering, University of Lorraine, Nancy, France.
Bioact Mater. 2024 Mar 5;36:168-184. doi: 10.1016/j.bioactmat.2024.02.019. eCollection 2024 Jun.
Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.
血管化对于在清除废物的同时为细胞提供营养和氧气至关重要。尽管3D生物打印取得了进展,但制造具有空隙和通道的结构仍然具有挑战性。本研究提出了一种新颖的方法,通过使用基于酪胺修饰的聚乙二醇(PEG-Tyr)的生物材料墨水进行3D同轴挤出打印,在单个加工步骤中创建坚固、灵活且可渗透的小尺寸(600-1300μm)人造血管。我们将明胶的生物相容性/活性、PEG-Tyr和藻酸盐的坚固性与甲基纤维素(MC)的剪切变稀特性结合在一种新型生物材料墨水中,用于制造仿生血管。使用核磁共振(NMR)和傅里叶变换红外光谱(FTIR)进行的化学表征证实了PEG与Tyr的成功修饰,流变学表征表明添加PEG-Tyr降低了墨水的粘度。PEG-Tyr的酶介导交联允许在水凝胶链内形成共价交联,确保其稳定性。PEG-Tyr单元改善了材料的机械性能,从而产生可拉伸且有弹性的构建体,而不会损害细胞活力和粘附。打印的血管结构显示出均匀的壁厚、形状保持、改善的弹性、渗透性以及内皮来源的-EA.hy926细胞的定植。绒毛尿囊膜(CAM)和实验证明了水凝胶支持新血管生成的能力。具有PEG-Tyr修饰的水凝胶材料在血管组织工程应用中具有前景,为血管结构的制造提供了一个灵活、生物相容且功能性的平台。