Suppr超能文献

基于鞣花酸的细胞外基质模拟黏附性生物墨水具有时变剪切稀化和稳定化行为。

Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.

机构信息

Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 University Road, Yuseong-gu, Daejeon 34141, South Korea; Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.

Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.

出版信息

Acta Biomater. 2019 Sep 1;95:165-175. doi: 10.1016/j.actbio.2018.10.028. Epub 2018 Oct 24.

Abstract

3D bioprinting is an attractive technique to fabricate well-organized, cell-laden constructs for tissue repair and disease modeling. Although numerous hydrogel bioinks have been developed, materials are still needed that mimic the cellular microenvironment, have the appropriate viscosity and stabilization for printing, and are cytocompatible. Here, we present a unique gallol-modified extracellular matrix (ECM) hydrogel ink that is inspired by rapid fruit browning phenomena. The gallol-modification of ECM components (e.g., hyaluronic acid, gelatin) allowed (i) immediate gelation and shear-thinning properties by dynamic hydrogen bonds on short time-scales and (ii) further auto-oxidation and covalent crosslinking for stabilization on longer time-scales. The gallol ECM hydrogel ink was printable using an extrusion-based 3D printer by exploiting temporal shear-thinning properties, and further showed cytocompatibility (∼95% viability) and on-tissue printability due to adhesiveness of gallol moieties. Printed cell-laden filaments degraded and swelled with culture over 6 days, corresponding to increases in cell density and spreading. Ultimately, this strategy is useful for designing hydrogel inks with tunable properties for 3D bioprinting. STATEMENT OF SIGNIFICANCE: 3D bioprinting is a promising technique for the fabrication of cell-laden constructs for applications as in vitro models or for therapeutic applications. Despite the previous development of numerous hydrogel bioinks, there still remain challenging considerations in the design of bioinks. In this study, we present a unique cytocompatible hydrogel ink with gallol modification that is inspired by rapid fruit browning phenomena. The gallol hydrogel ink has three important properties: i) it shows immediate gelation by dynamic, reversible bonds for shear-thinning extrusion, ii) it allows spontaneous stabilization by subsequent covalent crosslinking after printing, and iii) it is printable on tissues by adhesive properties of gallol moieties. As such, this work presents a new approach in the design of hydrogel inks.

摘要

3D 生物打印是一种有吸引力的技术,可以制造组织修复和疾病建模的组织有序、细胞负载的构建体。尽管已经开发了许多水凝胶生物墨水,但仍需要模拟细胞微环境的材料,具有适当的粘度和打印稳定性,并且细胞相容。在这里,我们提出了一种独特的多酚修饰细胞外基质(ECM)水凝胶墨水,灵感来自于快速的水果褐变现象。ECM 成分(如透明质酸、明胶)的多酚修饰允许(i)通过短时间尺度上的动态氢键立即凝胶化和剪切稀化特性,(ii)通过进一步的自动氧化和共价交联在较长时间尺度上进行稳定化。多酚 ECM 水凝胶墨水可通过利用时间剪切稀化特性使用基于挤出的 3D 打印机进行打印,并且由于多酚部分的粘附性,进一步显示出细胞相容性(约 95%活力)和组织内打印性。由于培养时间超过 6 天,细胞负载的纤维降解和肿胀,对应于细胞密度和扩散的增加。最终,该策略对于设计具有可调节 3D 生物打印特性的水凝胶墨水是有用的。

意义声明

3D 生物打印是一种有前途的技术,用于制造细胞负载的构建体,可用于体外模型或治疗应用。尽管之前已经开发了许多水凝胶生物墨水,但在生物墨水的设计中仍然存在具有挑战性的考虑因素。在这项研究中,我们提出了一种独特的多酚修饰细胞相容水凝胶墨水,灵感来自于快速的水果褐变现象。多酚水凝胶墨水具有三个重要特性:i)它通过动态、可逆键立即凝胶化,以进行剪切稀化挤出,ii)它允许在打印后通过随后的共价交联进行自发稳定化,iii)它通过多酚部分的粘附性在组织上进行打印。因此,这项工作提出了水凝胶墨水设计的新方法。

相似文献

1
Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
Acta Biomater. 2019 Sep 1;95:165-175. doi: 10.1016/j.actbio.2018.10.028. Epub 2018 Oct 24.
3
A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
Biomed Mater. 2020 Nov 27;16(1):015003. doi: 10.1088/1748-605X/abb2d8.
4
3D bioprinting of complex channels within cell-laden hydrogels.
Acta Biomater. 2019 Sep 1;95:214-224. doi: 10.1016/j.actbio.2019.02.038. Epub 2019 Mar 1.
5
3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
Acta Biomater. 2021 Jan 1;119:75-88. doi: 10.1016/j.actbio.2020.11.006. Epub 2020 Nov 7.
6
Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting.
Acta Biomater. 2019 Sep 1;95:176-187. doi: 10.1016/j.actbio.2019.01.041. Epub 2019 Jan 19.
7
3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
Biofabrication. 2020 Mar 13;12(2):025029. doi: 10.1088/1758-5090/ab736e.
9
Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting.
ACS Appl Mater Interfaces. 2017 Dec 20;9(50):43449-43458. doi: 10.1021/acsami.7b13602. Epub 2017 Dec 7.
10
Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues.
Biofabrication. 2019 Feb 25;11(2):025009. doi: 10.1088/1758-5090/ab02c9.

引用本文的文献

1
Overview of Dynamic Bond Based Hydrogels for Reversible Adhesion Processes.
Gels. 2024 Jul 4;10(7):442. doi: 10.3390/gels10070442.
2
3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review.
Biomater Res. 2023 Dec 24;27(1):137. doi: 10.1186/s40824-023-00460-0.
4
Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models.
Adv Mater. 2023 Dec;35(52):e2301670. doi: 10.1002/adma.202301670. Epub 2023 Nov 2.
5
Tyramine-Functionalized Alginate-Collagen Hybrid Hydrogel Inks for 3D-Bioprinting.
Polymers (Basel). 2022 Aug 3;14(15):3173. doi: 10.3390/polym14153173.
6
Bioink Formulation and Machine Learning-Empowered Bioprinting Optimization.
Front Bioeng Biotechnol. 2022 Jun 13;10:913579. doi: 10.3389/fbioe.2022.913579. eCollection 2022.
8
Systematic Approach to Mimic Phenolic Natural Polymers for Biofabrication.
Polymers (Basel). 2022 Mar 22;14(7):1282. doi: 10.3390/polym14071282.
9
Enhancing Peptide Biomaterials for Biofabrication.
Polymers (Basel). 2021 Aug 4;13(16):2590. doi: 10.3390/polym13162590.
10
Replace and repair: Biomimetic bioprinting for effective muscle engineering.
APL Bioeng. 2021 Jul 8;5(3):031502. doi: 10.1063/5.0040764. eCollection 2021 Sep.

本文引用的文献

1
3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1743-1751. doi: 10.1021/acsbiomaterials.6b00158. Epub 2016 Jun 9.
2
3D printing for drug manufacturing: A perspective on the future of pharmaceuticals.
Int J Bioprint. 2017 Sep 25;4(1):119. doi: 10.18063/IJB.v4i1.119. eCollection 2018.
3
Targeting protein and peptide therapeutics to the heart via tannic acid modification.
Nat Biomed Eng. 2018 May;2(5):304-317. doi: 10.1038/s41551-018-0227-9. Epub 2018 Apr 30.
4
Chitosan-catechol: a writable bioink under serum culture media.
Biomater Sci. 2018 May 1;6(5):1040-1047. doi: 10.1039/c8bm00174j.
6
Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks.
J Biomed Mater Res A. 2018 Apr;106(4):865-875. doi: 10.1002/jbm.a.36323. Epub 2018 Jan 23.
7
Quantification of Substitution of Gelatin Methacryloyl: Best Practice and Current Pitfalls.
Biomacromolecules. 2018 Jan 8;19(1):42-52. doi: 10.1021/acs.biomac.7b01221. Epub 2017 Dec 21.
8
Tunicate-Inspired Gallol Polymers for Underwater Adhesive: A Comparative Study of Catechol and Gallol.
Biomacromolecules. 2017 Sep 11;18(9):2959-2966. doi: 10.1021/acs.biomac.7b00921. Epub 2017 Aug 30.
9
Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.
Int J Mol Sci. 2017 Jul 23;18(7):1597. doi: 10.3390/ijms18071597.
10
A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink.
Biofabrication. 2017 Apr 12;9(2):025004. doi: 10.1088/1758-5090/aa6997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验