Rizwan Saira, Toothman Beverly, Li Bo, Engel Abbi J, Lim Rayne R, Niernberger Sheldon, Lu Jinyu, Ratliff Cloe, Xiang Yinxiao, Eminhizer Mark, Chao Jennifer R, Du Jianhai
bioRxiv. 2024 Jul 18:2024.02.28.582405. doi: 10.1101/2024.02.28.582405.
Metabolic defects in the retinal pigment epithelium (RPE) underlie many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells.
We profiled nutrient utilization of various human RPE cells, including differentiated and dedifferentiated fetal RPE (fRPE), induced pluripotent stem cell derived-RPE (iPSC RPE), Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE, CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and ARPE-19 cell lines using Biolog Phenotype MicroArray Assays.
Differentiated fRPE cells and healthy iPSC RPE cells can utilize 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose their epithelial phenotype through dedifferentiation, nutrient utilization becomes restricted to 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can utilize 37 nutrients; however, compared to cSFD RPE and healthy iPSC RPE, they are unable to utilize lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased utilization of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. Dedifferentiated ARPE-19 cells grown in traditional culture media cannot utilize lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation towards an epithelial phenotype, restoring the ability to use these nutrients.
Epithelial phenotype confers metabolic flexibility to healthy RPE for utilizing various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the potentially important roles of nutrient availability and utilization in RPE differentiation and diseases.
视网膜色素上皮(RPE)的代谢缺陷是许多视网膜退行性疾病的基础。本研究旨在确定健康和患病的人类RPE细胞的营养需求。
我们使用Biolog表型微阵列分析对各种人类RPE细胞的营养利用情况进行了分析,包括分化和去分化的胎儿RPE(fRPE)、诱导多能干细胞衍生的RPE(iPSC RPE)、Sorsby眼底营养不良(SFD)患者来源的iPSC RPE、CRISPR校正的同基因SFD(cSFD)iPSC RPE以及ARPE-19细胞系。
分化的fRPE细胞和健康的iPSC RPE细胞分别可以利用51种和48种营养物质,包括糖类、糖酵解和三羧酸(TCA)循环的中间产物、脂肪酸、酮体、氨基酸和二肽。然而,当fRPE细胞通过去分化失去其上皮表型时,营养利用仅限于17种营养物质,主要是糖和谷氨酰胺相关的氨基酸。SFD RPE细胞可以利用其中37种营养物质;然而,与cSFD RPE和健康的iPSC RPE相比,它们无法利用乳酸、一些TCA循环中间产物和短链脂肪酸。尽管如此,它们对支链氨基酸(BCAAs)和含BCAA的二肽的利用有所增加。在传统培养基中生长的去分化ARPE-19细胞无法利用乳酸和酮体。相比之下,补充烟酰胺可促进向上皮表型的分化,恢复利用这些营养物质的能力。
上皮表型赋予健康RPE利用各种营养物质的代谢灵活性。SFD RPE细胞的代谢灵活性降低,依赖于BCAAs的氧化。我们的研究结果突出了营养物质的可用性和利用在RPE分化和疾病中的潜在重要作用。