Suppr超能文献

评估人工智能模型对分子数据集的可推广性。

Evaluating generalizability of artificial intelligence models for molecular datasets.

作者信息

Ektefaie Yasha, Shen Andrew, Bykova Daria, Marin Maximillian, Zitnik Marinka, Farhat Maha

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

Department of Computer Science, Northwestern University, Evanston, IL, USA.

出版信息

bioRxiv. 2024 Feb 28:2024.02.25.581982. doi: 10.1101/2024.02.25.581982.

Abstract

Deep learning has made rapid advances in modeling molecular sequencing data. Despite achieving high performance on benchmarks, it remains unclear to what extent deep learning models learn general principles and generalize to previously unseen sequences. Benchmarks traditionally interrogate model generalizability by generating metadata based (MB) or sequence-similarity based (SB) train and test splits of input data before assessing model performance. Here, we show that this approach mischaracterizes model generalizability by failing to consider the full spectrum of cross-split overlap, , similarity between train and test splits. We introduce Spectra, a spectral framework for comprehensive model evaluation. For a given model and input data, Spectra plots model performance as a function of decreasing cross-split overlap and reports the area under this curve as a measure of generalizability. We apply Spectra to 18 sequencing datasets with associated phenotypes ranging from antibiotic resistance in tuberculosis to protein-ligand binding to evaluate the generalizability of 19 state-of-the-art deep learning models, including large language models, graph neural networks, diffusion models, and convolutional neural networks. We show that SB and MB splits provide an incomplete assessment of model generalizability. With Spectra, we find as cross-split overlap decreases, deep learning models consistently exhibit a reduction in performance in a task- and model-dependent manner. Although no model consistently achieved the highest performance across all tasks, we show that deep learning models can generalize to previously unseen sequences on specific tasks. Spectra paves the way toward a better understanding of how foundation models generalize in biology.

摘要

深度学习在对分子测序数据进行建模方面取得了迅速进展。尽管在基准测试中表现出色,但目前尚不清楚深度学习模型在多大程度上学习了通用原理并能推广到以前未见过的序列。传统的基准测试在评估模型性能之前,通过基于元数据(MB)或基于序列相似性(SB)的输入数据训练和测试分割来检验模型的通用性。在这里,我们表明这种方法未能考虑交叉分割重叠的全谱,即训练和测试分割之间的相似性,从而错误地描述了模型的通用性。我们引入了Spectra,这是一个用于全面模型评估的光谱框架。对于给定的模型和输入数据,Spectra将模型性能绘制为交叉分割重叠减少的函数,并报告该曲线下的面积作为通用性的度量。我们将Spectra应用于18个测序数据集,这些数据集具有从结核病的抗生素耐药性到蛋白质-配体结合等相关表型,以评估19种先进的深度学习模型的通用性,包括大语言模型、图神经网络、扩散模型和卷积神经网络。我们表明,SB和MB分割对模型通用性的评估并不完整。使用Spectra,我们发现随着交叉分割重叠的减少,深度学习模型在任务和模型依赖的方式下性能持续下降。虽然没有一个模型在所有任务中都始终表现出最高性能,但我们表明深度学习模型可以在特定任务上推广到以前未见过的序列。Spectra为更好地理解基础模型在生物学中的推广方式铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8b/10925170/65fa05abe4c0/nihpp-2024.02.25.581982v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验