Suppr超能文献

从大流行前的数据中学习以预测病毒逃逸。

Learning from prepandemic data to forecast viral escape.

机构信息

Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA.

Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.

出版信息

Nature. 2023 Oct;622(7984):818-825. doi: 10.1038/s41586-023-06617-0. Epub 2023 Oct 11.

Abstract

Effective pandemic preparedness relies on anticipating viral mutations that are able to evade host immune responses to facilitate vaccine and therapeutic design. However, current strategies for viral evolution prediction are not available early in a pandemic-experimental approaches require host polyclonal antibodies to test against, and existing computational methods draw heavily from current strain prevalence to make reliable predictions of variants of concern. To address this, we developed EVEscape, a generalizable modular framework that combines fitness predictions from a deep learning model of historical sequences with biophysical and structural information. EVEscape quantifies the viral escape potential of mutations at scale and has the advantage of being applicable before surveillance sequencing, experimental scans or three-dimensional structures of antibody complexes are available. We demonstrate that EVEscape, trained on sequences available before 2020, is as accurate as high-throughput experimental scans at anticipating pandemic variation for SARS-CoV-2 and is generalizable to other viruses including influenza, HIV and understudied viruses with pandemic potential such as Lassa and Nipah. We provide continually revised escape scores for all current strains of SARS-CoV-2 and predict probable further mutations to forecast emerging strains as a tool for continuing vaccine development ( evescape.org ).

摘要

有效的大流行准备依赖于预测能够逃避宿主免疫反应的病毒突变,从而促进疫苗和治疗方法的设计。然而,目前的病毒进化预测策略在大流行早期不可用-实验方法需要针对宿主多克隆抗体进行测试,而现有的计算方法则大量依赖于当前菌株的流行程度,以对关注变体进行可靠的预测。为了解决这个问题,我们开发了 EVEscape,这是一个可推广的模块化框架,它将来自历史序列的深度学习模型的适应性预测与生物物理和结构信息相结合。EVEscape 大规模量化了突变的病毒逃逸潜力,并且具有在可用监测测序、实验扫描或抗体复合物的三维结构之前应用的优势。我们证明,在 2020 年之前可用的序列上进行训练的 EVEscape 在预测 SARS-CoV-2 的大流行变异方面与高通量实验扫描一样准确,并且可推广到其他病毒,包括流感、HIV 以及具有大流行潜力的研究较少的病毒,如拉萨和尼帕。我们为所有当前的 SARS-CoV-2 菌株提供不断修订的逃逸分数,并预测可能的进一步突变,以预测新兴菌株作为继续疫苗开发的工具(evescape.org)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21c4/10599991/3c2726969b6e/41586_2023_6617_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验