Suppr超能文献

片上重构均匀剪切传感的三维基质嵌入多细胞血液微血管。

On-Chip Reconstitution of Uniformly Shear-Sensing 3D Matrix-embedded Multicellular Blood Microvessel.

作者信息

Vo Quoc, Carlson Kaely A, Chiknas Peter M, Brocker Chad N, DaSilva Luis, Clark Erica, Park Sang Ki, Ajiboye A Seun, Wier Eric M, Benam Kambez H

机构信息

Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.

出版信息

Adv Funct Mater. 2024 Mar 4;34(10). doi: 10.1002/adfm.202304630. Epub 2023 Aug 7.

Abstract

Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Here, we present a reliable, and simply reproducible process for constructing user-controlled long rounded extracellular matrix (ECM)-embedded vascular microlumens on-chip for endothelization and co-culture with stromal cells obtained from human lung. We demonstrate the critical impact of microchannel cross-sectional geometry and length on uniform distribution and magnitude of vascular wall shear stress, which is key when emulating -observed blood flow biomechanics in health and disease. In addition, we provide an optimization protocol for multicellular culture and functional validation of the system. Moreover, we show the ability to finely tune rheology of the three-dimensional natural matrix surrounding the vascular microchannel to match pathophysiological stiffness. In summary, we provide the scientific community with a matrix-embedded microvasculature on-chip populated with -primary human-derived pulmonary endothelial cells and fibroblasts to recapitulate and interrogate lung parenchymal biology, physiological responses, vascular biomechanics, and disease biogenesis . Such a mix-and-match synthetic platform can be feasibly adapted to study blood vessels, matrix, and ECM-embedded cells in other organs and be cellularized with additional stromal cells.

摘要

器官特异性脉管系统的临床前人类相关模型为广泛应用中重现病理生理细胞间、组织-组织和细胞-基质相互作用提供了独特机会。在此,我们展示了一种可靠且易于重现的流程,用于在芯片上构建用户可控的长圆形细胞外基质(ECM)包埋血管微腔,用于内皮化以及与源自人肺的基质细胞共培养。我们证明了微通道横截面几何形状和长度对血管壁剪切应力均匀分布和大小的关键影响,这在模拟健康和疾病状态下观察到的血流生物力学时至关重要。此外,我们提供了一种用于该系统多细胞培养和功能验证的优化方案。而且,我们展示了微调血管微通道周围三维天然基质流变学以匹配病理生理硬度的能力。总之,我们为科学界提供了一种芯片上基质包埋的微脉管系统,其中填充有原代人源肺内皮细胞和成纤维细胞,以概括和研究肺实质生物学、生理反应、血管生物力学和疾病发生机制。这样一个混合搭配的合成平台可以 feasibly 适用于研究其他器官中的血管、基质和 ECM 包埋细胞,并能用额外的基质细胞进行细胞化。 (注:“feasibly”这个词在原英文中可能有误,推测可能是“ feasibly”,若有误请根据正确英文调整翻译)

相似文献

3
Tissue-engineered microenvironment systems for modeling human vasculature.用于模拟人体血管系统的组织工程微环境系统
Exp Biol Med (Maywood). 2014 Sep;239(9):1264-71. doi: 10.1177/1535370214539228. Epub 2014 Jul 16.
7
3D Immunocompetent Organ-on-a-Chip Models.3D免疫活性器官芯片模型
Small Methods. 2020 Sep 11;4(9). doi: 10.1002/smtd.202000235. Epub 2020 Jun 17.

本文引用的文献

1
A vascularized model of the human liver mimics regenerative responses.一种血管化的人类肝脏模型模拟了再生反应。
Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2115867119. doi: 10.1073/pnas.2115867119. Epub 2022 Jun 28.
9
Exploring new technologies in biomedical research.探索生物医学研究中的新技术。
Drug Discov Today. 2019 Jun;24(6):1242-1247. doi: 10.1016/j.drudis.2019.04.001. Epub 2019 Apr 4.
10
Flow-enhanced vascularization and maturation of kidney organoids in vitro.体外增强肾类器官的血管生成和成熟。
Nat Methods. 2019 Mar;16(3):255-262. doi: 10.1038/s41592-019-0325-y. Epub 2019 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验