Vo Quoc, Carlson Kaely A, Chiknas Peter M, Brocker Chad N, DaSilva Luis, Clark Erica, Park Sang Ki, Ajiboye A Seun, Wier Eric M, Benam Kambez H
Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
Adv Funct Mater. 2024 Mar 4;34(10). doi: 10.1002/adfm.202304630. Epub 2023 Aug 7.
Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Here, we present a reliable, and simply reproducible process for constructing user-controlled long rounded extracellular matrix (ECM)-embedded vascular microlumens on-chip for endothelization and co-culture with stromal cells obtained from human lung. We demonstrate the critical impact of microchannel cross-sectional geometry and length on uniform distribution and magnitude of vascular wall shear stress, which is key when emulating -observed blood flow biomechanics in health and disease. In addition, we provide an optimization protocol for multicellular culture and functional validation of the system. Moreover, we show the ability to finely tune rheology of the three-dimensional natural matrix surrounding the vascular microchannel to match pathophysiological stiffness. In summary, we provide the scientific community with a matrix-embedded microvasculature on-chip populated with -primary human-derived pulmonary endothelial cells and fibroblasts to recapitulate and interrogate lung parenchymal biology, physiological responses, vascular biomechanics, and disease biogenesis . Such a mix-and-match synthetic platform can be feasibly adapted to study blood vessels, matrix, and ECM-embedded cells in other organs and be cellularized with additional stromal cells.
器官特异性脉管系统的临床前人类相关模型为广泛应用中重现病理生理细胞间、组织-组织和细胞-基质相互作用提供了独特机会。在此,我们展示了一种可靠且易于重现的流程,用于在芯片上构建用户可控的长圆形细胞外基质(ECM)包埋血管微腔,用于内皮化以及与源自人肺的基质细胞共培养。我们证明了微通道横截面几何形状和长度对血管壁剪切应力均匀分布和大小的关键影响,这在模拟健康和疾病状态下观察到的血流生物力学时至关重要。此外,我们提供了一种用于该系统多细胞培养和功能验证的优化方案。而且,我们展示了微调血管微通道周围三维天然基质流变学以匹配病理生理硬度的能力。总之,我们为科学界提供了一种芯片上基质包埋的微脉管系统,其中填充有原代人源肺内皮细胞和成纤维细胞,以概括和研究肺实质生物学、生理反应、血管生物力学和疾病发生机制。这样一个混合搭配的合成平台可以 feasibly 适用于研究其他器官中的血管、基质和 ECM 包埋细胞,并能用额外的基质细胞进行细胞化。 (注:“feasibly”这个词在原英文中可能有误,推测可能是“ feasibly”,若有误请根据正确英文调整翻译)