Suppr超能文献

光谱流式细胞术方法及流程在人类外周血和骨髓全面免疫组化分析中的应用

Spectral Flow Cytometry Methods and Pipelines for Comprehensive Immunoprofiling of Human Peripheral Blood and Bone Marrow.

机构信息

Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.

Department of Medicine, Harvard Medical School, Boston, Massachusetts.

出版信息

Cancer Res Commun. 2024 Mar 25;4(3):895-910. doi: 10.1158/2767-9764.CRC-23-0357.

Abstract

UNLABELLED

Profiling hematopoietic and immune cells provides important information about disease risk, disease status, and therapeutic responses. Spectral flow cytometry enables high-dimensional single-cell evaluation of large cohorts in a high-throughput manner. Here, we designed, optimized, and implemented new methods for deep immunophenotyping of human peripheral blood and bone marrow by spectral flow cytometry. Two blood antibody panels capture 48 cell-surface markers to assess more than 58 cell phenotypes, including subsets of T cells, B cells, monocytes, natural killer (NK) cells, and dendritic cells, and their respective markers of exhaustion, activation, and differentiation in less than 2 mL of blood. A bone marrow antibody panel captures 32 markers for 35 cell phenotypes, including stem/progenitor populations, T-cell subsets, dendritic cells, NK cells, and myeloid cells in a single tube. We adapted and developed innovative flow cytometric analysis algorithms, originally developed for single-cell genomics, to improve data integration and visualization. We also highlight technical considerations for users to ensure data fidelity. Our protocol and analysis pipeline accurately identifies rare cell types, discerns differences in cell abundance and phenotype across donors, and shows concordant immune landscape trends in patients with known hematologic malignancy.

SIGNIFICANCE

This study introduces optimized methods and analysis algorithms that enhance capabilities in comprehensive immunophenotyping of human blood and bone marrow using spectral flow cytometry. This approach facilitates detection of rare cell types, enables measurement of cell variations across donors, and provides proof-of-concept in identifying known hematologic malignancies. By unlocking complexities of hematopoietic and immune landscapes at the single-cell level, this advancement holds potential for understanding disease states and therapeutic responses.

摘要

未加标签

对造血细胞和免疫细胞的分析提供了有关疾病风险、疾病状态和治疗反应的重要信息。光谱流式细胞术能够以高通量的方式对大量队列进行高维单细胞评估。在这里,我们设计、优化并实施了新的方法,通过光谱流式细胞术对人外周血和骨髓进行深度免疫表型分析。两个血液抗体面板捕获 48 个细胞表面标志物,以评估超过 58 种细胞表型,包括 T 细胞、B 细胞、单核细胞、自然杀伤 (NK) 细胞和树突状细胞的亚群,以及它们各自的衰竭、激活和分化标志物,每个标志物的检测都在不到 2 毫升的血液中完成。骨髓抗体面板在单个管中捕获 32 个标记物,用于 35 种细胞表型,包括干细胞/祖细胞群体、T 细胞亚群、树突状细胞、NK 细胞和髓样细胞。我们改编和开发了创新的流式细胞术分析算法,这些算法最初是为单细胞基因组学开发的,以提高数据集成和可视化。我们还强调了用户确保数据保真度的技术注意事项。我们的方案和分析管道准确地识别稀有细胞类型,区分供体之间细胞丰度和表型的差异,并在已知血液恶性肿瘤患者中显示出一致的免疫景观趋势。

意义

本研究介绍了优化的方法和分析算法,这些方法和算法增强了使用光谱流式细胞术对人血液和骨髓进行全面免疫表型分析的能力。这种方法有助于检测稀有细胞类型,能够测量供体之间的细胞变化,并提供在识别已知血液恶性肿瘤方面的概念验证。通过在单细胞水平上揭示造血和免疫景观的复杂性,这一进展有可能用于理解疾病状态和治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/10962315/99ee666c7cb7/crc-23-0357_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验