Suppr超能文献

利用癌症预测指标,外周血TCR库可改善多种癌症类型的早期检测。

Peripheral blood TCR repertoire improves early detection across multiple cancer types utilizing a cancer predictor.

作者信息

Tang Yinglei, Liao Xinyi, Liao Bo, Peng Dejun, Li Qingbo

机构信息

School of Mathematics and Statistics, Hainan Normal University, Haikou, China.

China Unicom (Hainan) Industrial Internet Co. Ltd, Haikou, China.

出版信息

Front Oncol. 2025 Aug 27;15:1625369. doi: 10.3389/fonc.2025.1625369. eCollection 2025.

Abstract

INTRODUCTION

In the early asymptomatic stages of cancer, the immune system initiates a targeted response against tumor-associated antigens. During this phase, the immune system specifically identifies tumor antigens and triggers the clonal expansion of tumor antigen-specific T cells, which recognize tumor antigen peptides presented by the major histocompatibility complex via the T-cell receptor (TCR) on their surface. Consequently, monitoring alterations in the TCR repertoire holds promise for evaluating an individual's immune status for cancer detection.

METHODS

In this study, we introduced a deep learning framework named DeepCaTCR, designed to enhance the prediction of cancer-associated T-cell receptors. The framework employs a one-dimensional convolutional neural network with variable convolutional kernels, a bidirectional long short-term memory network, and a self-attention mechanism to facilitate feature extraction from amino acid fragments of varying lengths.

RESULTS

DeepCaTCR demonstrates superior performance in cancer-associated TCR recognition, achieving an area under the receiver operating characteristic curve (AUC) of 0.863 and an F1-score of 0.669, thereby outperforming prevailing deep learning models. Validation result indicates that DeepCaTCR effectively distinguishes between tumor-infiltrating lymphocytes (TILs) and healthy peripheral blood samples, achieving an AUC greater than 0.95. It also exhibits high sensitivity (62.5%) and specificity (over 98%) in peripheral blood testing for early-stage cancer patients. To further enhance detection efficacy, we introduced a variance-based repertoire scoring strategy to quantify the dynamic heterogeneity of TCR clonal amplification, resulting in an increased AUC of 0.967 for pan-cancer early screening.

DISCUSSION

This study introduces a novel tool for analyzing the tumor immune microenvironment, offering significant translational potential for early cancer diagnosis. Its key feature is a new scoring method based on variance, not the average method.

摘要

引言

在癌症的早期无症状阶段,免疫系统会针对肿瘤相关抗原启动靶向反应。在此阶段,免疫系统会特异性识别肿瘤抗原,并触发肿瘤抗原特异性T细胞的克隆扩增,这些T细胞通过其表面的T细胞受体(TCR)识别由主要组织相容性复合体呈递的肿瘤抗原肽。因此,监测TCR库的变化有望用于评估个体的免疫状态以进行癌症检测。

方法

在本研究中,我们引入了一个名为DeepCaTCR的深度学习框架,旨在增强对癌症相关T细胞受体的预测。该框架采用具有可变卷积核的一维卷积神经网络、双向长短期记忆网络和自注意力机制,以促进从不同长度的氨基酸片段中提取特征。

结果

DeepCaTCR在癌症相关TCR识别方面表现出卓越性能,受试者操作特征曲线(AUC)下面积达到0.863,F1分数为0.669,从而优于现有的深度学习模型。验证结果表明,DeepCaTCR能够有效区分肿瘤浸润淋巴细胞(TILs)和健康外周血样本,AUC大于0.95。在早期癌症患者的外周血检测中,它还表现出高灵敏度(62.5%)和高特异性(超过98%)。为了进一步提高检测效率,我们引入了一种基于方差的库评分策略来量化TCR克隆扩增的动态异质性,在泛癌早期筛查中使AUC提高到0.967。

讨论

本研究引入了一种用于分析肿瘤免疫微环境的新型工具,为早期癌症诊断提供了重要的转化潜力。其关键特征是一种基于方差而非平均值的新评分方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ad/12420280/ad1bf4818da7/fonc-15-1625369-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验