Dian Renwei, Liu Yuanye, Li Shutao
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):5140-5150. doi: 10.1109/TNNLS.2024.3359852. Epub 2025 Feb 28.
Spectral super-resolution has attracted the attention of more researchers for obtaining hyperspectral images (HSIs) in a simpler and cheaper way. Although many convolutional neural network (CNN)-based approaches have yielded impressive results, most of them ignore the low-rank prior of HSIs resulting in huge computational and storage costs. In addition, the ability of CNN-based methods to capture the correlation of global information is limited by the receptive field. To surmount the problem, we design a novel low-rank tensor reconstruction network (LTRN) for spectral super-resolution. Specifically, we treat the features of HSIs as 3-D tensors with low-rank properties due to their spectral similarity and spatial sparsity. Then, we combine canonical-polyadic (CP) decomposition with neural networks to design an adaptive low-rank prior learning (ALPL) module that enables feature learning in a 1-D space. In this module, there are two core modules: the adaptive vector learning (AVL) module and the multidimensionwise multihead self-attention (MMSA) module. The AVL module is designed to compress an HSI into a 1-D space by using a vector to represent its information. The MMSA module is introduced to improve the ability to capture the long-range dependencies in the row, column, and spectral dimensions, respectively. Finally, our LTRN, mainly cascaded by several ALPL modules and feedforward networks (FFNs), achieves high-quality spectral super-resolution with fewer parameters. To test the effect of our method, we conduct experiments on two datasets: the CAVE dataset and the Harvard dataset. Experimental results show that our LTRN not only is as effective as state-of-the-art methods but also has fewer parameters. The code is available at https://github.com/renweidian/LTRN.
光谱超分辨率以更简单、更廉价的方式获取高光谱图像(HSIs),吸引了越来越多研究人员的关注。尽管许多基于卷积神经网络(CNN)的方法取得了令人瞩目的成果,但其中大多数都忽略了HSIs的低秩先验,导致巨大的计算和存储成本。此外,基于CNN的方法捕捉全局信息相关性的能力受到感受野的限制。为了克服这个问题,我们设计了一种用于光谱超分辨率的新型低秩张量重建网络(LTRN)。具体来说,由于HSIs的光谱相似性和空间稀疏性,我们将其特征视为具有低秩特性的三维张量。然后,我们将典范多向(CP)分解与神经网络相结合,设计了一个自适应低秩先验学习(ALPL)模块,该模块能够在一维空间中进行特征学习。在这个模块中,有两个核心模块:自适应向量学习(AVL)模块和多维多头自注意力(MMSA)模块。AVL模块旨在通过使用向量来表示HSI的信息,将其压缩到一维空间中。引入MMSA模块是为了分别提高在行、列和光谱维度上捕捉长程依赖关系的能力。最后,我们的LTRN主要由几个ALPL模块和前馈网络(FFN)级联组成,以较少的参数实现了高质量的光谱超分辨率。为了测试我们方法的效果,我们在两个数据集上进行了实验:CAVE数据集和哈佛数据集。实验结果表明,我们的LTRN不仅与现有最先进方法一样有效,而且参数更少。代码可在https://github.com/renweidian/LTRN获取。