Suppr超能文献

回归热螺旋体属的全球分布和风险预测:数据回顾与模型分析。

The global distribution and the risk prediction of relapsing fever group Borrelia: a data review with modelling analysis.

机构信息

State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.

Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China.

出版信息

Lancet Microbe. 2024 May;5(5):e442-e451. doi: 10.1016/S2666-5247(23)00396-8. Epub 2024 Mar 8.

Abstract

BACKGROUND

The recent discovery of emerging relapsing fever group Borrelia (RFGB) species, such as Borrelia miyamotoi, poses a growing threat to public health. However, the global distribution and associated risk burden of these species remain uncertain. We aimed to map the diversity, distribution, and potential infection risk of RFGB.

METHODS

We searched PubMed, Web of Science, GenBank, CNKI, and eLibrary from Jan 1, 1874, to Dec 31, 2022, for published articles without language restriction to extract distribution data for RFGB detection in vectors, animals, and humans, and clinical information about human patients. Only articles documenting RFGB infection events were included in this study, and data for RFGB detection in vectors, animals, or humans were composed into a dataset. We used three machine learning algorithms (boosted regression trees, random forest, and least absolute shrinkage and selection operator logistic regression) to assess the environmental, ecoclimatic, biological, and socioeconomic factors associated with the occurrence of four major RFGB species: Borrelia miyamotoi, Borrelia lonestari, Borrelia crocidurae, and Borrelia hermsii; and mapped their worldwide risk level.

FINDINGS

We retrieved 13 959 unique studies, among which 697 met the selection criteria and were used for data extraction. 29 RFGB species have been recorded worldwide, of which 27 have been identified from 63 tick species, 12 from 61 wild animals, and ten from domestic animals. 16 RFGB species caused human infection, with a cumulative count of 26 583 cases reported from Jan 1, 1874, to Dec 31, 2022. Borrelia recurrentis (17 084 cases) and Borrelia persica (2045 cases) accounted for the highest proportion of human infection. B miyamotoi showed the widest distribution among all RFGB, with a predicted environmentally suitable area of 6·92 million km, followed by B lonestari (1·69 million km), B crocidurae (1·67 million km), and B hermsii (1·48 million km). The habitat suitability index of vector ticks and climatic factors, such as the annual mean temperature, have the most significant effect among all predictive models for the geographical distribution of the four major RFGB species.

INTERPRETATION

The predicted high-risk regions are considerably larger than in previous reports. Identification, surveillance, and diagnosis of RFGB infections should be prioritised in high-risk areas, especially within low-income regions.

FUNDING

National Key Research and Development Program of China.

摘要

背景

最近发现的新兴回归热群螺旋体(RFGB)物种,如 Miyamotoi 螺旋体,对公共卫生构成了日益严重的威胁。然而,这些物种的全球分布和相关风险负担仍不确定。我们旨在绘制 RFGB 的多样性、分布和潜在感染风险图谱。

方法

我们从 1874 年 1 月 1 日至 2022 年 12 月 31 日在 PubMed、Web of Science、GenBank、CNKI 和 eLibrary 上搜索了已发表的文章,不限制语言,以提取 RFGB 在媒介、动物和人类中的检测分布数据,以及人类患者的临床信息。只有记录 RFGB 感染事件的文章才被纳入本研究,并且将媒介、动物或人类中 RFGB 的检测数据组合成一个数据集。我们使用三种机器学习算法(提升回归树、随机森林和最小绝对收缩和选择算子逻辑回归)来评估与四种主要 RFGB 物种(Miyamotoi 螺旋体、Lonestari 螺旋体、Crocidurae 螺旋体和 Hermsii 螺旋体)发生相关的环境、生态气候、生物和社会经济因素,并绘制了它们的全球风险水平图谱。

发现

我们检索到 13959 项独特的研究,其中 697 项符合选择标准并用于数据提取。全世界已经记录了 29 种 RFGB 物种,其中 27 种已从 63 种蜱种中鉴定出来,12 种已从 61 种野生动物中鉴定出来,10 种已从家畜中鉴定出来。16 种 RFGB 物种引起了人类感染,自 1874 年 1 月 1 日以来,共报告了 26583 例累积病例,截至 2022 年 12 月 31 日。复发性螺旋体(17084 例)和波斯螺旋体(2045 例)占人类感染的比例最高。Miyamotoi 螺旋体在所有 RFGB 中分布最广,预测的环境适宜面积为 692 万平方千米,其次是 Lonestari 螺旋体(169 万平方千米)、Crocidurae 螺旋体(167 万平方千米)和 Hermsii 螺旋体(148 万平方千米)。预测四种主要 RFGB 物种地理分布的所有预测模型中,媒介蜱的栖息地适宜指数和气候因素(如年平均温度)的影响最大。

解释

预测的高风险区域比以往报告的要大得多。在高风险地区,特别是在低收入地区,应优先考虑识别、监测和诊断 RFGB 感染。

资金来源

中国国家重点研发计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验