基于深度多实例转移学习的胸片气胸分类。

Deep multi-instance transfer learning for pneumothorax classification in chest X-ray images.

机构信息

Academy of Engineering and Technology, Fudan University, Shanghai, China.

Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Med Phys. 2022 Jan;49(1):231-243. doi: 10.1002/mp.15328. Epub 2021 Dec 7.

Abstract

PURPOSE

Pneumothorax is a life-threatening emergency that requires immediate treatment. Frontal-view chest X-ray images are typically used for pneumothorax detection in clinical practice. However, manual review of radiographs is time-consuming, labor-intensive, and highly dependent on the experience of radiologists, which may lead to misdiagnosis. Here, we aim to develop a reliable automatic classification method to assist radiologists in rapidly and accurately diagnosing pneumothorax in frontal chest radiographs.

METHODS

A novel residual neural network (ResNet)-based two-stage deep-learning strategy is proposed for pneumothorax identification: local feature learning (LFL) followed by global multi-instance learning (GMIL). Most of the nonlesion regions in the images are removed for learning discriminative features. Two datasets are used for large-scale validation: a private dataset (27 955 frontal-view chest X-ray images) and a public dataset (the National Institutes of Health [NIH] ChestX-ray14; 112 120 frontal-view X-ray images). The model performance of the identification was evaluated using the accuracy, precision, recall, specificity, F1-score, receiver operating characteristic (ROC), and area under ROC curve (AUC). Fivefold cross-validation is conducted on the datasets, and then the mean and standard deviation of the above-mentioned metrics are calculated to assess the overall performance of the model.

RESULTS

The experimental results demonstrate that the proposed learning strategy can achieve state-of-the-art performance on the NIH dataset with an accuracy, AUC, precision, recall, specificity, and F1-score of 94.4% ± 0.7%, 97.3% ± 0.5%, 94.2% ± 0.3%, 94.6% ± 1.5%, 94.2% ± 0.4%, and 94.4% ± 0.7%, respectively.

CONCLUSIONS

The experimental results demonstrate that our proposed CAD system is an efficient assistive tool in the identification of pneumothorax.

摘要

目的

气胸是一种危及生命的紧急情况,需要立即治疗。临床实践中通常使用正位胸片图像来检测气胸。然而,放射影像的人工审查既费时费力,又高度依赖放射科医生的经验,这可能导致误诊。在这里,我们旨在开发一种可靠的自动分类方法,以帮助放射科医生快速准确地诊断正位胸片中的气胸。

方法

提出了一种基于新型残差神经网络(ResNet)的两阶段深度学习策略来进行气胸识别:局部特征学习(LFL) followed by 全局多实例学习(GMIL)。为了学习判别特征,去除了图像中大部分无病变区域。使用两个数据集进行了大规模验证:一个私有数据集(27955 张正位胸片图像)和一个公共数据集(美国国立卫生研究院[NIH]ChestX-ray14;112120 张正位 X 射线图像)。使用准确性、精确性、召回率、特异性、F1 分数、接收器操作特征(ROC)和 ROC 曲线下面积(AUC)评估识别模型的性能。在数据集上进行五折交叉验证,然后计算上述指标的平均值和标准差,以评估模型的整体性能。

结果

实验结果表明,所提出的学习策略在 NIH 数据集上可以达到最先进的性能,准确率、AUC、精确率、召回率、特异性和 F1 分数分别为 94.4% ± 0.7%、97.3% ± 0.5%、94.2% ± 0.3%、94.6% ± 1.5%、94.2% ± 0.4%和 94.4% ± 0.7%。

结论

实验结果表明,我们提出的 CAD 系统是气胸识别的有效辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索