School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
Environ Sci Pollut Res Int. 2024 Apr;31(17):25114-25128. doi: 10.1007/s11356-024-32723-1. Epub 2024 Mar 11.
Assessment and prediction for the ecotoxicity of engineered nanoparticles (ENPs) at the community or ecosystem levels represents a critical step toward a comprehensive understanding of the ecological risks of ENPs. Current studies on predicting the ecotoxicity of ENPs primarily focus on the cellular and individual levels, with limited exploration at the community or ecosystem levels. Herein, we present the first of the reports for the direct prediction of aquatic ecological risk for ENPs at the community level using machine learning (ML) approaches in the field of computational toxicology. Specifically, we extensively collected the threshold concentrations of twelve ENPs including metal- and carbon-based nanoparticles for aquatic species, i.e., hazardous concentrations at which 5% of species are harmed (HC), established by a species sensitivity distribution. Afterwards, we used eight supervised ML methods including Adaboost, artificial neural network, C4.5 decision tree, K-nearest neighbor, logistic regression, Naive Bayes, random forest, and support vector machine to develop nine classification models and four regression models, respectively, for the qualitative and quantitative prediction of HC. The evaluation of model performance yielded the internal validation accuracy of all classification models ranging from 71.4 to 100%, and the determination coefficient of regression models ranging from 0.702 to 0.999, indicating that the developed models showed good performance. By using a cross-validation method and an application domain characterization, the selected models were further validated to have powerful predictive ability. Furthermore, the incorporation of three nanostructural descriptors (metal oxide sublimation enthalpy, zeta potential, and specific surface area) linked to toxicity mechanisms (the release of metal ions, the stability of dispersions of particles in aqueous suspensions, and the surface properties of the material) effectively enhanced the prediction power and mechanistic interpretability of the selected models. These findings would not only be beneficial in the screening of ENPs with potential high ecological risks that need to be tested as a priority but also contribute to the development of environmental regulations and standards for ENPs.
评估和预测工程纳米颗粒 (ENPs) 在群落或生态系统水平上的生态毒性,是全面了解 ENPs 生态风险的关键步骤。目前,关于 ENPs 生态毒性的预测研究主要集中在细胞和个体水平,在群落或生态系统水平上的研究有限。在此,我们首次使用计算毒理学领域的机器学习 (ML) 方法,直接预测 ENPs 在群落水平上的水生生态风险。具体来说,我们广泛收集了包括金属和碳基纳米颗粒在内的 12 种 ENPs 的物种敏感度分布阈值浓度,即有 5%的物种受到危害的危险浓度 (HC)。之后,我们使用 8 种有监督的 ML 方法,包括 Adaboost、人工神经网络、C4.5 决策树、K-最近邻、逻辑回归、朴素贝叶斯、随机森林和支持向量机,分别建立了 9 个分类模型和 4 个回归模型,用于 HC 的定性和定量预测。模型性能的评估得出,所有分类模型的内部验证准确率在 71.4%到 100%之间,回归模型的决定系数在 0.702 到 0.999 之间,表明所开发的模型具有良好的性能。通过使用交叉验证方法和应用领域特征描述,进一步验证了所选模型具有强大的预测能力。此外,将与毒性机制相关的三个纳米结构描述符(金属氧化物升华焓、zeta 电位和比表面积)纳入其中,有效地提高了所选模型的预测能力和机制解释能力。这些发现不仅有助于筛选需要优先测试的具有潜在高生态风险的 ENPs,还有助于制定 ENPs 的环境法规和标准。