Suppr超能文献

一项比较性综述:有无机器学习辅助下金属纳米材料的生物安全性与可持续性

A Comparative Review: Biological Safety and Sustainability of Metal Nanomaterials Without and with Machine Learning Assistance.

作者信息

Xiao Na, Li Yonghui, Sun Peiyan, Zhu Peihua, Wang Hongyan, Wu Yin, Bai Mingyu, Li Ansheng, Ming Wuyi

机构信息

Department of Engineering, Huanghe University of Science and Technology, Zhengzhou 450008, China.

Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China.

出版信息

Micromachines (Basel). 2024 Dec 26;16(1):15. doi: 10.3390/mi16010015.

Abstract

In recent years, metal nanomaterials and nanoproducts have been developed intensively, and they are now widely applied across various sectors, including energy, aerospace, agriculture, industry, and biomedicine. However, nanomaterials have been identified as potentially toxic, with the toxicity of metal nanoparticles posing significant risks to both human health and the environment. Therefore, the toxicological risk assessment of metal nanomaterials is essential to identify and mitigate potential adverse effects. This review provides a comprehensive analysis of the safety and sustainability of metallic nanoparticles (such as Au NPs, Ag NPs, etc.) in key domains such as medicine, energy, and environmental protection. Using a dual-perspective analysis approach, it highlights the unique advantages of machine learning in data processing, predictive modeling, and optimization. At the same time, it underscores the importance of traditional methods, particularly their ability to offer greater interpretability and more intuitive results in specific contexts. Finally, a comparative analysis of traditional methods and machine learning techniques for detecting the toxicity of metal nanomaterials is presented, emphasizing the key challenges that need to be addressed in future research.

摘要

近年来,金属纳米材料和纳米产品得到了深入发展,如今广泛应用于各个领域,包括能源、航空航天、农业、工业和生物医学。然而,纳米材料已被认定具有潜在毒性,金属纳米颗粒的毒性对人类健康和环境都构成重大风险。因此,金属纳米材料的毒理学风险评估对于识别和减轻潜在的不利影响至关重要。本综述对金属纳米颗粒(如金纳米颗粒、银纳米颗粒等)在医学、能源和环境保护等关键领域的安全性和可持续性进行了全面分析。采用双视角分析方法,突出了机器学习在数据处理、预测建模和优化方面的独特优势。同时,强调了传统方法的重要性,特别是它们在特定背景下提供更强解释性和更直观结果的能力。最后,对检测金属纳米材料毒性的传统方法和机器学习技术进行了比较分析,强调了未来研究中需要解决的关键挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/018b/11767896/ae83a9e50a94/micromachines-16-00015-g010.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验