Suppr超能文献

通过集成机器学习和代谢组学方法预测纳米毒性。

Predicting nanotoxicity by an integrated machine learning and metabolomics approach.

机构信息

Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

出版信息

Environ Pollut. 2020 Dec;267:115434. doi: 10.1016/j.envpol.2020.115434. Epub 2020 Aug 18.

Abstract

Predicting the biological responses to engineered nanoparticles (ENPs) is critical to their environmental health assessment. The disturbances of metabolic pathways reflect the global profile of biological responses to ENPs but are difficult to predict due to the highly heterogeneous data from complicated biological systems and various ENP properties. Herein, integrating multiple machine learning models and metabolomics enabled accurate prediction of the disturbance of metabolic pathways induced by 33 ENPs. Screening nine typical properties of ENPs identified type and size as the top features determining the effects on metabolic pathways. Similarity network analysis and decision tree models overcame the highly heterogeneous data sources to visualize and judge the occurrence of metabolic pathways depending on the sorting priority features. The model accuracy was verified by animal experiments and reached 75%-100%, even for the prediction of ENPs outside of databases. The models also predicted metabolic pathway-related histopathology. This work provides an approach for the quick assessment of environmental health risks induced by known and unknown ENPs.

摘要

预测工程纳米颗粒(ENPs)对生物的反应对于其环境健康评估至关重要。代谢途径的干扰反映了生物对 ENPs 反应的整体概况,但由于来自复杂生物系统和各种 ENP 性质的高度异质数据,因此难以预测。在此,整合多个机器学习模型和代谢组学使对 33 种 ENPs 诱导的代谢途径干扰的准确预测成为可能。筛选 ENPs 的九种典型性质,确定类型和大小是决定对代谢途径影响的首要特征。相似网络分析和决策树模型克服了高度异质的数据来源,根据分类优先级特征可视化和判断代谢途径的发生。通过动物实验验证了模型的准确性,达到了 75%-100%,即使对于数据库之外的 ENPs 的预测也是如此。该模型还预测了与代谢途径相关的组织病理学。这项工作为快速评估已知和未知 ENPs 引起的环境健康风险提供了一种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验