Suppr超能文献

基于脑电信号的分形分析和希尔伯特-黄变换的精神病理学即时检验(POCT)。

Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG).

机构信息

College of Medicine And Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.

Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE.

出版信息

Adv Neurobiol. 2024;36:693-715. doi: 10.1007/978-3-031-47606-8_35.

Abstract

Research has shown that relying only on self-reports for diagnosing psychiatric disorders does not yield accurate results at all times. The advances of technology as well as artificial intelligence and other machine learning algorithms have allowed the introduction of point of care testing (POCT) including EEG characterization and correlations with possible psychopathology. Nonlinear methods of EEG analysis have significant advantages over linear methods. Empirical mode decomposition (EMD) is a reliable nonlinear method of EEG pre-processing. In this chapter, we compare two existing EEG complexity measures - Higuchi fractal dimension (HFD) and sample entropy (SE), with our newly proposed method using Higuchi fractal dimension from the Hilbert Huang transform (HFD-HHT). We present an example using the three complexity measures on a 2-minute EEG recorded from a healthy 20-year-old male after signal pre-processing. Furthermore, we showed the usefulness of these complexity measures in the classification of major depressive disorder (MDD) with healthy controls. Our study is in line with previous research and has shown an increase in HFD and SE values in the full, alpha and beta frequency bands suggestive of an increase in EEG irregularity. Moreover, the HFD-HHT values decreased in those three bands for majority of electrodes which is suggestive of a decrease in irregularity in the frequency-time domain. We conclude that all three complexity measures can be vital features useful for EEG analysis which could be incorporated in POCT systems.

摘要

研究表明,仅依靠自我报告来诊断精神障碍并不能保证结果始终准确。随着技术的进步,以及人工智能和其他机器学习算法的发展,使得即时护理检测(POCT)得以引入,包括 EEG 特征描述以及与可能的精神病理学的相关性。与线性方法相比,脑电信号非线性分析方法具有显著优势。经验模态分解(EMD)是一种可靠的 EEG 预处理非线性方法。在本章中,我们将比较两种现有的 EEG 复杂度测量方法——Higuchi 分形维数(HFD)和样本熵(SE),以及我们新提出的基于 Hilbert-Huang 变换的 Higuchi 分形维数(HFD-HHT)方法。我们提供了一个示例,使用这三种复杂度测量方法对一名 20 岁健康男性的 2 分钟 EEG 信号进行分析,该信号经过信号预处理。此外,我们还展示了这些复杂度测量方法在区分健康对照组和重度抑郁症(MDD)患者中的有用性。我们的研究与之前的研究一致,表明全频带、alpha 频带和 beta 频带的 HFD 和 SE 值增加,提示 EEG 不规则性增加。此外,大多数电极的 HFD-HHT 值在这三个频带中降低,提示频率-时间域不规则性降低。我们的结论是,这三种复杂度测量方法都可以作为 EEG 分析的重要特征,可用于 POCT 系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验