Vitucci Eva C M, Simmons Alysha E, Martin Elizabeth M, McCullough Shaun D
Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA.
Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
Part Fibre Toxicol. 2024 Mar 11;21(1):15. doi: 10.1186/s12989-024-00576-8.
Particulate matter 2.5 (PM) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR.
An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure.
Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells.
Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.
肺部肺泡毛细血管区域(ACR)中的细颗粒物2.5(PM)沉积与呼吸系统疾病的发展显著相关,但其分子机制尚未完全明确。促进呼吸系统疾病发展的不良反应涉及ACR内多种细胞类型之间精心编排的细胞间信号传导。我们在一个能够实现ACR内多种驻留细胞类型之间细胞间通讯的体外模型中,研究了ACR中PM沉积引发的分子机制。
构建了一个ACR的体外三培养模型,该模型包含肺泡样上皮细胞(NCI-H441)、肺成纤维细胞(IMR90)和肺微血管内皮细胞(HULEC),以在类似体内的模型中研究细胞类型特异性的分子对PM暴露的反应。这个三培养体外模型被称为肺泡毛细血管区域暴露(ACRE)模型。ACRE模型中的肺泡上皮细胞暴露于平均直径为2.5μm的柴油废气颗粒物(DEP)(20μg/cm)悬浮液中。在24小时的DEP暴露期间,研究了直接暴露的肺泡上皮细胞和下层内皮细胞中肺泡上皮屏障的形成以及转录和蛋白质表达的变化。
24小时的DEP暴露并未干扰肺泡上皮屏障的形成。尽管屏障形成没有改变,但我们证明肺泡上皮DEP暴露会诱导肺泡上皮细胞和下层微血管内皮细胞中的转录和蛋白质变化。具体而言,我们表明下层微血管内皮细胞出现氧化还原功能障碍并增加促炎细胞因子的分泌。此外,我们证明肺泡上皮丝裂原活化蛋白激酶(MAPK)信号传导调节下层微血管内皮细胞中核因子E2相关因子2(NRF2)的激活和白细胞介素-8(IL-8)的分泌。
内皮氧化还原功能障碍和促炎细胞因子分泌增加是呼吸系统疾病发展中的两个常见事件。这些发现突出了肺泡上皮和微血管内皮在ACR中对PM暴露后呼吸系统疾病发展的新的、细胞类型特异性作用。最终,这些数据扩展了我们目前对颗粒物暴露后呼吸系统疾病发展的理解,并说明了多细胞体外系统在研究呼吸道健康方面的实用性。