Suppr超能文献

非晶阳极氧化TiO纳米管阵列的结晶

Crystallization of amorphous anodized TiO nanotube arrays.

作者信息

Wang Zhiqiang, Chen Kunfeng, Xue Dongfeng

机构信息

Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China

Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China Shenzhen 518110 China

出版信息

RSC Adv. 2024 Mar 11;14(12):8195-8203. doi: 10.1039/d4ra00852a. eCollection 2024 Mar 6.

Abstract

Anodized TiO nanotube arrays (TNTAs) prepared by anodization have garnered widespread attention due to their unique structure and properties. In this study, we prepared TNTAs of varying lengths by controlling the anodization time. Among them, the nanotubes anodized for 2 h have an inner diameter of approximately 92 nm and a wall thickness of approximately 12 nm. Then we subjected amorphous TNTAs prepared by the anodization method to annealing treatments, systematically analyzing the evolution of morphology and structure with varying annealing temperatures. As the annealing temperature increases, the amorphous successively undergoes transitions to the anatase phase and then to the rutile phase. During the transition to the anatase phase, the structure of the nanotube array remains intact, with the complete preservation of the tubular array structure. However, during the transition to the rutile phase, the tubular array structure is destroyed. To address why the tubular array remains undamaged during the amorphous-to-anatase transition, we subjected amorphous TNTAs to annealing at 300 °C for different durations. Raman spectroscopy was employed for fit analysis, providing insights into the evolution of the molecular structure during the anatase phase transition. Finally, TNTAs annealed at different temperatures were incorporated into lithium-ion batteries. By combining XRD for semi-quantitative phase content and anatase particle size calculations, we established a correlation between structure and electrochemical performance. The results indicate a significant improvement in electrochemical performance for an amorphous-anatase structure obtained through annealing at 300 °C, providing insights for the design of high-performance energy storage materials.

摘要

通过阳极氧化制备的阳极氧化二氧化钛纳米管阵列(TNTAs)因其独特的结构和性能而受到广泛关注。在本研究中,我们通过控制阳极氧化时间制备了不同长度的TNTAs。其中,阳极氧化2小时的纳米管内径约为92nm,壁厚约为12nm。然后,我们对通过阳极氧化法制备的非晶态TNTAs进行退火处理,系统地分析了不同退火温度下形态和结构的演变。随着退火温度的升高,非晶态依次转变为锐钛矿相,然后转变为金红石相。在向锐钛矿相转变过程中,纳米管阵列的结构保持完整,管状阵列结构得以完全保留。然而,在向金红石相转变过程中,管状阵列结构被破坏。为了解决为什么在非晶态向锐钛矿相转变过程中管状阵列保持无损的问题,我们将非晶态TNTAs在300℃下进行不同时间的退火。采用拉曼光谱进行拟合分析,深入了解锐钛矿相转变过程中分子结构的演变。最后,将不同温度退火的TNTAs应用于锂离子电池。通过结合XRD进行半定量相含量和锐钛矿粒径计算,我们建立了结构与电化学性能之间的相关性。结果表明,通过300℃退火获得的非晶态-锐钛矿结构的电化学性能有显著提高,为高性能储能材料的设计提供了思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验