Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.
Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
Magn Reson Med. 2024 Aug;92(2):447-458. doi: 10.1002/mrm.30084. Epub 2024 Mar 12.
To introduce a tool (TensorFit) for ultrafast and robust metabolite fitting of MRSI data based on Torch's auto-differentiation and optimization framework.
TensorFit was implemented in Python based on Torch's auto-differentiation to fit individual metabolites in MRS spectra. The underlying time domain and/or frequency domain fitting model is based on a linear combination of metabolite spectroscopic response. The computational time efficiency and accuracy of TensorFit were tested on simulated and in vivo MRS data and compared against TDFDFit and QUEST.
TensorFit demonstrates a significant improvement in computation speed, achieving a 165-times acceleration compared with TDFDFit and 115 times against QUEST. TensorFit showed smaller percentual errors on simulated data compared with TDFDFit and QUEST. When tested on in vivo data, it performed similarly to TDFDFit with a 2% better fit in terms of mean squared error while obtaining a 169-fold speedup.
TensorFit enables fast and robust metabolite fitting in large MRSI data sets compared with conventional metabolite fitting methods. This tool could boost the clinical applicability of large 3D MRSI by enabling the fitting of large MRSI data sets within computation times acceptable in a clinical environment.
介绍一种基于 Torch 的自动微分和优化框架的 MRSI 数据超快、鲁棒代谢物拟合工具(TensorFit)。
TensorFit 是基于 Python 并基于 Torch 的自动微分来拟合 MRS 光谱中的单个代谢物。基础的时域和/或频域拟合模型基于代谢物光谱响应的线性组合。在模拟和体内 MRS 数据上测试了 TensorFit 的计算时间效率和准确性,并与 TDFDFit 和 QUEST 进行了比较。
TensorFit 在计算速度上有显著的提高,与 TDFDFit 相比加速了 165 倍,与 QUEST 相比加速了 115 倍。与 TDFDFit 和 QUEST 相比,TensorFit 在模拟数据上的百分比误差更小。在体内数据上进行测试时,它与 TDFDFit 的性能相似,在均方误差方面的拟合精度提高了 2%,同时速度提高了 169 倍。
与传统代谢物拟合方法相比,TensorFit 能够在大型 MRSI 数据集上实现快速、鲁棒的代谢物拟合。该工具可以通过在临床环境中可接受的计算时间内拟合大型 MRSI 数据集,从而提高大型 3D MRSI 的临床适用性。