School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China.
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen(CUHK-Shenzhen), Guangdong, 518172, P. R. China.
Adv Mater. 2024 Jun;36(25):e2400085. doi: 10.1002/adma.202400085. Epub 2024 Mar 17.
The interactive flexible device, which monitors the human motion in optical and electrical synergistic modes, has attracted growing attention recently. The incorporation of information attribute within the optical signal is deemed advantageous for improving the interactive efficiency. Therefore, the development of wearable optical information-electronic strain sensors holds substantial promise, but integrating and synergizing various functions and realizing strain-mediated information transformation keep challenging. Herein, an amylopectin (AP) modified nanoclay/polyacrylamide-based nanocomposite (NC) hydrogel and an aggregation-induced-emission-active ink are fabricated. Through the fluorescence-transfer printing of the ink onto the hydrogel film in different strains with nested multiple symbolic information, a wearable interactive fluorescent information-electronic strain sensor is developed. In the sensor, the nanoclay plays a synergistic "one-stone-three-birds" role, contributing to "lightening" fluorescence (≈80 times emission intensity enhancement), ionic conductivity, and excellent stretchability (>1000%). The sensor has high biocompatibility, resilience (elastic recovery ratio: 97.8%), and strain sensitivity (gauge factor (GF): 10.9). Additionally, the AP endows the sensor with skin adhesiveness. The sensor can achieve electrical monitoring of human joint movements while displaying interactive fluorescent information transformation. This research poses an efficient strategy to develop multifunctional materials and provides a general platform for achieving next-generation interactive devices with prospective applications in wearable devices, human-machine interfaces, and artificial intelligence.
最近,一种能够以光学和电气协同模式监测人体运动的交互式灵活设备引起了越来越多的关注。在光学信号中加入信息属性被认为有利于提高交互效率。因此,开发可穿戴式光信息电子应变传感器具有很大的潜力,但集成和协同各种功能以及实现应变介导的信息转换仍然具有挑战性。在此,制备了一种支链淀粉(AP)修饰的纳米黏土/聚丙烯酰胺基纳米复合材料(NC)水凝胶和一种聚集诱导发射活性墨水。通过将墨水荧光转移打印到具有嵌套式多重符号信息的不同应变水凝胶薄膜上,开发了一种可穿戴式交互式荧光信息电子应变传感器。在传感器中,纳米黏土发挥了协同的“一石三鸟”作用,有助于“点亮”荧光(≈80 倍的发射强度增强)、离子电导率和优异的拉伸性(>1000%)。该传感器具有高生物相容性、弹性(弹性回复率:97.8%)和应变敏感性(应变系数(GF):10.9)。此外,AP 赋予了传感器皮肤粘附性。该传感器可以实现对人体关节运动的电监测,同时显示交互式荧光信息转换。这项研究提出了一种高效的多功能材料开发策略,并为实现具有下一代人机交互、人工智能等应用前景的交互式设备提供了一个通用平台。