Suppr超能文献

使用Fitbit设备进行月经周期的可行性研究(FEMFIT):前瞻性观察队列研究。

Feasibility Study on Menstrual Cycles With Fitbit Device (FEMFIT): Prospective Observational Cohort Study.

作者信息

Lang Anna-Lena, Bruhn Rosa-Lotta, Fehling Maya, Heidenreich Anouk, Reisdorf Jonathan, Khanyaree Ifrah, Henningsen Maike, Remschmidt Cornelius

机构信息

Data4Life gGmbH, Potsdam, Germany.

Faculty of Health, University Witten Herdecke, Witten Herdecke, Germany.

出版信息

JMIR Mhealth Uhealth. 2024 Mar 12;12:e50135. doi: 10.2196/50135.

Abstract

BACKGROUND

Despite its importance to women's reproductive health and its impact on women's daily lives, the menstrual cycle, its regulation, and its impact on health remain poorly understood. As conventional clinical trials rely on infrequent in-person assessments, digital studies with wearable devices enable the collection of longitudinal subjective and objective measures.

OBJECTIVE

The study aims to explore the technical feasibility of collecting combined wearable and digital questionnaire data and its potential for gaining biological insights into the menstrual cycle.

METHODS

This prospective observational cohort study was conducted online over 12 weeks. A total of 42 cisgender women were recruited by their local gynecologist in Berlin, Germany, and given a Fitbit Inspire 2 device and access to a study app with digital questionnaires. Statistical analysis included descriptive statistics on user behavior and retention, as well as a comparative analysis of symptoms from the digital questionnaires with metrics from the sensor devices at different phases of the menstrual cycle.

RESULTS

The average time spent in the study was 63.3 (SD 33.0) days with 9 of the 42 individuals dropping out within 2 weeks of the start of the study. We collected partial data from 114 ovulatory cycles, encompassing 33 participants, and obtained complete data from a total of 50 cycles. Participants reported a total of 2468 symptoms in the daily questionnaires administered during the luteal phase and menses. Despite difficulties with data completeness, the combined questionnaire and sensor data collection was technically feasible and provided interesting biological insights. We observed an increased heart rate in the mid and end luteal phase compared with menses and participants with severe premenstrual syndrome walked substantially fewer steps (average daily steps 10,283, SD 6277) during the luteal phase and menses compared with participants with no or low premenstrual syndrome (mean 11,694, SD 6458).

CONCLUSIONS

We demonstrate the feasibility of using an app-based approach to collect combined wearable device and questionnaire data on menstrual cycles. Dropouts in the early weeks of the study indicated that engagement efforts would need to be improved for larger studies. Despite the challenges of collecting wearable data on consecutive days, the data collected provided valuable biological insights, suggesting that the use of questionnaires in conjunction with wearable data may provide a more complete understanding of the menstrual cycle and its impact on daily life. The biological findings should motivate further research into understanding the relationship between the menstrual cycle and objective physiological measurements from sensor devices.

摘要

背景

尽管月经周期对女性生殖健康很重要且会影响女性日常生活,但人们对其调节机制及其对健康的影响仍知之甚少。由于传统临床试验依赖于不频繁的现场评估,利用可穿戴设备进行的数字研究能够收集纵向主观和客观测量数据。

目的

本研究旨在探讨收集可穿戴设备与数字问卷相结合的数据的技术可行性,以及其在深入了解月经周期生物学方面的潜力。

方法

这项前瞻性观察性队列研究在12周内通过网络进行。德国柏林的当地妇科医生招募了42名顺性别女性,并为她们提供了Fitbit Inspire 2设备以及访问包含数字问卷的研究应用程序的权限。统计分析包括用户行为和留存率的描述性统计,以及对月经周期不同阶段数字问卷中的症状与传感器设备测量指标的比较分析。

结果

研究的平均时长为63.3(标准差33.0)天,42名参与者中有9人在研究开始后的2周内退出。我们从114个排卵周期收集了部分数据,涉及33名参与者,并从总共50个周期中获得了完整数据。参与者在黄体期和月经期的每日问卷中总共报告了2468种症状。尽管数据完整性存在困难,但问卷和传感器数据的联合收集在技术上是可行的,并提供了有趣的生物学见解。我们观察到,与月经期相比,黄体期中期和末期心率增加,并且与没有或仅有轻度经前综合征的参与者相比,患有严重经前综合征的参与者在黄体期和月经期的步数大幅减少(平均每日步数10283步,标准差6277步)(平均步数11694步,标准差6458步)。

结论

我们证明了使用基于应用程序的方法收集关于月经周期的可穿戴设备和问卷相结合的数据的可行性。研究早期的退出情况表明,对于更大规模的研究,需要改进参与度方面的工作。尽管连续多天收集可穿戴数据存在挑战,但所收集的数据提供了有价值的生物学见解,这表明问卷与可穿戴数据结合使用可能会更全面地了解月经周期及其对日常生活的影响。这些生物学发现应促使进一步研究,以了解月经周期与传感器设备客观生理测量之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24b/10966447/51f315caecc9/mhealth_v12i1e50135_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验