Kutukova Kristina, Lechowski Bartlomiej, Grenzer Joerg, Krueger Peter, Clausner André, Zschech Ehrenfried
deepXscan GmbH, Zeppelinstr. 1, 01324 Dresden, Germany.
Fraunhofer Institute for Ceramic Technologies and Systems, Maria-Reiche-Str. 5, 01099 Dresden, Germany.
Nanomaterials (Basel). 2024 Feb 29;14(5):448. doi: 10.3390/nano14050448.
High-resolution imaging of Cu/low-k on-chip interconnect stacks in advanced microelectronic products is demonstrated using full-field transmission X-ray microscopy (TXM). The comparison of two lens-based laboratory X-ray microscopes that are operated at two different photon energies, 8.0 keV and 9.2 keV, shows a contrast enhancement for imaging of copper nanostructures embedded in insulating organosilicate glass of a factor of 5 if 9.2 keV photons are used. Photons with this energy (Ga-Kα radiation) are generated from a Ga-containing target of a laboratory X-ray source applying the liquid-metal-jet technology. The 5 times higher contrast compared to the use of Cu-Kα radiation (8.0 keV photon energy) from a rotating anode X-ray source is caused by the fact that the energy of the Ga-Kα emission line is slightly higher than that of the Cu-K absorption edge (9.0 keV photon energy). The use of Ga-Kα radiation is of particular advantage for imaging of copper interconnects with dimensions from several 100 nm down to several 10 nm in a Cu/SiO or Cu/low-k backend-of-line stack. Physical failure analysis and reliability engineering in the semiconductor industry will benefit from high-contrast X-ray images of sub-μm copper structures in microchips.
利用全场透射X射线显微镜(TXM)展示了先进微电子产品中铜/低k片上互连堆叠的高分辨率成像。对两台基于透镜的实验室X射线显微镜进行比较,它们在两种不同的光子能量(8.0 keV和9.2 keV)下运行,结果表明,如果使用9.2 keV光子,嵌入绝缘有机硅玻璃中的铜纳米结构成像的对比度提高了5倍。这种能量的光子(Ga-Kα辐射)由应用液态金属喷射技术的实验室X射线源的含镓靶产生。与使用旋转阳极X射线源的Cu-Kα辐射(8.0 keV光子能量)相比,对比度提高5倍是因为Ga-Kα发射线的能量略高于Cu-K吸收边的能量(9.0 keV光子能量)。对于在Cu/SiO或Cu/低k线后端堆叠中尺寸从几百纳米到几十纳米的铜互连成像,使用Ga-Kα辐射具有特别的优势。半导体行业的物理失效分析和可靠性工程将受益于微芯片中亚微米级铜结构的高对比度X射线图像。