Lechowski Bartlomiej, Kutukova Kristina, Grenzer Joerg, Panchenko Iuliana, Krueger Peter, Clausner Andre, Zschech Ehrenfried
deepXscan GmbH, Zeppelinstr. 1, 01324 Dresden, Germany.
Institute of Electronic Packaging Technology, Technische Universität Dresden, Helmholtzstr. 10, 01069 Dresden, Germany.
Nanomaterials (Basel). 2024 Jan 21;14(2):233. doi: 10.3390/nano14020233.
High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV. The combination of two multilayer optics-a side-by-side Montel (or nested Kirkpatrick-Baez) condenser optic and a high aspect-ratio multilayer Laue lens-results in an asymmetric optical path in the transmission X-ray microscope. This optics arrangement allows the imaging of 3D nanostructures in opaque objects at a photon energy of 24.2 keV (In-Kα X-ray line). Using a Siemens star test pattern with a minimal feature size of 150 nm, it was proven that features < 150 nm can be resolved. In-Kα radiation is generated from a Ga-In alloy target using a laboratory X-ray source that employs the liquid-metal-jet technology. Since the penetration depth of X-rays into the samples is significantly larger compared to 8 keV photons used in state-of-the-art laboratory X-ray microscopes (Cu-Kα radiation), 3D-nanopattered materials and structures can be imaged nondestructively in mm to cm thick samples. This means that destructive de-processing, thinning or cross-sectioning of the samples are not needed for the visualization of interconnect structures in microelectronic products manufactured using advanced packaging technologies. The application of laboratory transmission X-ray microscopy in the hard X-ray regime is demonstrated for Cu/CuSn/Cu microbump interconnects fabricated using solid-liquid interdiffusion (SLID) bonding.
在硬X射线区域,即光子能量>10 keV时,展示了利用全场X射线显微镜对先进微电子产品中掩埋金属互连结构进行高分辨率成像。两个多层光学元件的组合——一个并排的蒙泰尔(或嵌套的柯克帕特里克-贝兹)聚光镜光学元件和一个高纵横比的多层劳厄透镜——在透射X射线显微镜中形成了不对称光路。这种光学装置允许在24.2 keV(铟-Kα X射线线)的光子能量下对不透明物体中的三维纳米结构进行成像。使用最小特征尺寸为150 nm的西门子星测试图案,证明了<150 nm的特征可以被分辨。铟-Kα辐射由使用液态金属喷射技术的实验室X射线源从镓-铟合金靶产生。由于与现有技术的实验室X射线显微镜(铜-Kα辐射)中使用的8 keV光子相比,X射线对样品的穿透深度显著更大,因此可以对毫米至厘米厚的样品中的三维纳米图案化材料和结构进行无损成像。这意味着对于使用先进封装技术制造的微电子产品中的互连结构可视化,不需要对样品进行破坏性的去处理(去除工艺)、减薄或切片。展示了实验室透射X射线显微镜在硬X射线区域对使用固液互扩散(SLID)键合制造的铜/铜锡/铜微凸点互连的应用。