Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
School of Biological and Environmental Studies, Millikin University, 1184 W. Main Street, Decatur, Illinois 62522, United States.
ACS Appl Mater Interfaces. 2024 Mar 27;16(12):15202-15214. doi: 10.1021/acsami.4c00226. Epub 2024 Mar 12.
Quantum dots (QDs) hold immense promise for bioimaging, yet technical challenges in surface engineering limit their wider scientific use. We introduce poly(pentafluorophenyl acrylate) (PPFPA) as a user-friendly prepolymer platform for creating precisely controlled multidentate polymeric ligands for QD surface engineering, accessible to researchers without extensive synthetic expertise. PPFPA combines the benefits of both bottom-up and prepolymer approaches, offering minimal susceptibility to hydrolysis and side reactions for controlled chemical composition, along with simple synthetic procedures using commercially available reagents. Live cell imaging experiments highlighted a significant reduction in nonspecific binding when employing PPFPA, owing to its minimal hydrolysis, in contrast to ligands synthesized by using a conventional prepolymer prone to uncontrolled hydrolysis. This observation underscores the distinct advantage of our prepolymer system. Leveraging PPFPA, we synthesized biomolecule-conjugated QDs and performed QD-based immunofluorescence to detect a cytosolic protein. To effectively label cytosolic targets in such a dense and complex environment, probes must exhibit minimal nonspecific binding and be compact. As a result, QD-immunofluorescence has focused primarily on cell surface targets. By creating compact QD-F(ab')2, we sensitively detected alpha-tubulin with a ∼50-fold higher signal-to-noise ratio compared to organic dye-based labeling. PPFPA represents a versatile and accessible platform for tailoring QD surfaces, offering a pathway to realize the full potential of colloidal QDs in various scientific applications.
量子点(QDs)在生物成像方面具有巨大的应用潜力,但表面工程方面的技术挑战限制了它们在更广泛的科学领域中的应用。我们引入了聚(五氟苯丙烯酸酯)(PPFPA)作为一种易于使用的预聚物平台,用于创建精确控制的多齿聚合物配体,用于 QD 表面工程,即使没有广泛的合成专业知识的研究人员也可以使用。PPFPA 结合了自下而上和预聚物方法的优点,提供了最小的水解敏感性和副反应,以控制化学组成,同时使用商业上可获得的试剂进行简单的合成过程。活细胞成像实验表明,当使用 PPFPA 时,由于其水解程度最小,与使用容易发生不受控制水解的传统预聚物合成的配体相比,非特异性结合显著减少。这一观察结果突出了我们的预聚物系统的明显优势。利用 PPFPA,我们合成了生物分子偶联的 QD,并进行了基于 QD 的免疫荧光检测以检测细胞质蛋白。为了有效地标记这种密集和复杂环境中的细胞质靶标,探针必须表现出最小的非特异性结合并且紧凑。因此,QD-免疫荧光主要集中在细胞表面靶标上。通过创建紧凑的 QD-F(ab')2,与基于有机染料的标记相比,我们以约 50 倍的更高信噪比灵敏地检测了微管蛋白。PPFPA 是一种用于调整 QD 表面的多功能且易于使用的平台,为实现胶体 QD 在各种科学应用中的全部潜力提供了途径。