Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States.
Acc Chem Res. 2020 Jun 16;53(6):1124-1138. doi: 10.1021/acs.accounts.9b00641. Epub 2020 May 19.
In the past three decades, interest in using nanoparticles as diagnostic tools to interrogate various biosystems has witnessed remarkable growth. For instance, it has been shown that nanoparticle probes enable the study of cellular processes at the single molecule level. These advances provide new opportunities for understanding fundamental problems in biology, innovation in medicine, and the treatment of diseases. A multitude of nanoparticles have been designed to facilitate or sensing, imaging, and diagnostics. Some of those nanoparticle platforms are currently in clinical trials or have been approved by the U.S. Food and Drug Administration. Nonetheless, using nanoparticles in biology is still facing several obstacles, such as poor colloidal stability under physiological conditions, nonspecific interactions with serum proteins, and low targeting efficiency in biological fluids, in addition to issues of uncontrolled biodistribution and cytotoxicity. All these problems are primarily controlled by the surface stabilizing coating used.In this Account, we summarize recent progress made in our laboratory focused on the development of multifunctional polymers as coordinating ligands, to tailor the surface properties of nanoparticles and facilitate their application in biology. We first detail the advantageous features of the coating strategy, followed by a discussion of the key parameters in the ligand design. We then describe the synthesis and use of a series of multicoordinating polymers as ligands optimized for coating quantum dots (QDs), gold nanoparticles (AuNPs), and magnetic nanoparticles (MNPs), with a focus on (i) how to improve the colloidal stability and antifouling performance of materials in biological conditions; (ii) how to design highly compact coating, without compromising colloidal stability; and (iii) how to tailor the surface functionalities to achieve conjugation to target biomolecules. We also highlight the ability of a phase transfer strategy, mediated by UV irradiation, to promote rapid ligand exchange while preserving the integrity of key functional groups. We then summarize the bioconjugation approaches applied to polymer-coated nanoparticles, with emphasis on the ability of metal-histidine self-assembly and click chemistry, to control the final nanoparticle bioconjugates. Finally, we demonstrate the use of polymer-coated nanoparticles for sensor design based on redox-active interactions and peptide-mediated intracellular delivery. We anticipate that the coating design presented in this Account would advance the integration of nanoparticles into biology and medicine.
在过去的三十年中,人们对使用纳米粒子作为诊断工具来研究各种生物系统的兴趣显著增长。例如,已经表明,纳米粒子探针能够在单分子水平上研究细胞过程。这些进展为理解生物学中的基本问题、医学创新和疾病治疗提供了新的机会。已经设计了多种纳米粒子来促进或感测、成像和诊断。其中一些纳米粒子平台目前正在临床试验中,或者已经获得美国食品和药物管理局的批准。尽管如此,在生物学中使用纳米粒子仍然面临着几个障碍,例如在生理条件下胶体稳定性差、与血清蛋白的非特异性相互作用以及在生物流体中的靶向效率低,以及控制不良的生物分布和细胞毒性等问题。所有这些问题主要都受所使用的表面稳定涂层控制。在本报告中,我们总结了我们实验室在开发多功能聚合物作为配位配体方面的最新进展,以调整纳米粒子的表面特性并促进其在生物学中的应用。我们首先详细介绍了涂层策略的有利特征,然后讨论了配体设计中的关键参数。接下来,我们描述了一系列多配位聚合物的合成和使用,这些聚合物作为配体优化用于包覆量子点 (QD)、金纳米粒子 (AuNP) 和磁性纳米粒子 (MNP),重点介绍 (i) 如何改善材料在生物条件下的胶体稳定性和抗污染性能;(ii) 如何设计高度紧凑的涂层,而不影响胶体稳定性;以及 (iii) 如何调整表面功能以实现与靶标生物分子的连接。我们还强调了通过紫外线照射介导的相转移策略促进快速配体交换的能力,同时保持关键官能团的完整性。然后,我们总结了应用于聚合物包覆的纳米粒子的生物偶联方法,重点介绍了金属-组氨酸自组装和点击化学控制最终纳米粒子生物偶联物的能力。最后,我们展示了基于氧化还原相互作用和肽介导的细胞内递药的聚合物包覆纳米粒子用于传感器设计的应用。我们预计,本报告中提出的涂层设计将推动纳米粒子在生物学和医学中的整合。