Suppr超能文献

开发一种工具(INSPECT-SR)的方案,用于在卫生干预措施系统评价中识别有问题的随机对照试验。

Protocol for the development of a tool (INSPECT-SR) to identify problematic randomised controlled trials in systematic reviews of health interventions.

作者信息

Wilkinson Jack, Heal Calvin, Antoniou George A, Flemyng Ella, Alfirevic Zarko, Avenell Alison, Barbour Ginny, Brown Nicholas J L, Carlisle John, Clarke Mike, Dicker Patrick, Dumville Jo C, Grey Andrew, Grohmann Steph, Gurrin Lyle, Hayden Jill Alison, Heathers James, Hunter Kylie Elizabeth, Lasserson Toby, Lam Emily, Lensen Sarah, Li Tianjing, Li Wentao, Loder Elizabeth, Lundh Andreas, Meyerowitz-Katz Gideon, Mol Ben W, O'Connell Neil E, Parker Lisa, Redman Barbara K, Seidler Lene, Sheldrick Kyle A, Sydenham Emma, Torgerson David, van Wely Madelon, Wang Rui, Bero Lisa, Kirkham Jamie J

机构信息

Centre for Biostatistics, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK

Centre for Biostatistics, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.

出版信息

BMJ Open. 2024 Mar 11;14(3):e084164. doi: 10.1136/bmjopen-2024-084164.

Abstract

INTRODUCTION

Randomised controlled trials (RCTs) inform healthcare decisions. It is now apparent that some published RCTs contain false data and some appear to have been entirely fabricated. Systematic reviews are performed to identify and synthesise all RCTs that have been conducted on a given topic. While it is usual to assess methodological features of the RCTs in the process of undertaking a systematic review, it is not usual to consider whether the RCTs contain false data. Studies containing false data therefore go unnoticed and contribute to systematic review conclusions. The INveStigating ProblEmatic Clinical Trials in Systematic Reviews (INSPECT-SR) project will develop a tool to assess the trustworthiness of RCTs in systematic reviews of healthcare-related interventions.

METHODS AND ANALYSIS

The INSPECT-SR tool will be developed using expert consensus in combination with empirical evidence, over five stages: (1) a survey of experts to assemble a comprehensive list of checks for detecting problematic RCTs, (2) an evaluation of the feasibility and impact of applying the checks to systematic reviews, (3) a Delphi survey to determine which of the checks are supported by expert consensus, culminating in, (4) a consensus meeting to select checks to be included in a draft tool and to determine its format and (5) prospective testing of the draft tool in the production of new health systematic reviews, to allow refinement based on user feedback. We anticipate that the INSPECT-SR tool will help researchers to identify problematic studies and will help patients by protecting them from the influence of false data on their healthcare.

ETHICS AND DISSEMINATION

The University of Manchester ethics decision tool was used, and this returned the result that ethical approval was not required for this project (30 September 2022), which incorporates secondary research and surveys of professionals about subjects relating to their expertise. Informed consent will be obtained from all survey participants. All results will be published as open-access articles. The final tool will be made freely available.

摘要

引言

随机对照试验(RCT)为医疗决策提供依据。现在很明显,一些已发表的随机对照试验包含虚假数据,还有一些似乎是完全编造的。进行系统评价是为了识别和综合针对给定主题所开展的所有随机对照试验。虽然在进行系统评价的过程中通常会评估随机对照试验的方法学特征,但通常不会考虑这些随机对照试验是否包含虚假数据。因此,包含虚假数据的研究未被发现,并影响了系统评价的结论。“系统评价中调查有问题的临床试验(INSPECT-SR)”项目将开发一种工具,用于评估医疗相关干预措施系统评价中随机对照试验的可信度。

方法与分析

INSPECT-SR工具将通过专家共识结合实证证据分五个阶段开发:(1)对专家进行调查,以汇总用于检测有问题随机对照试验的全面检查清单;(2)评估将这些检查应用于系统评价的可行性和影响;(3)进行德尔菲调查,以确定哪些检查得到专家共识的支持,最终(4)召开共识会议,选择纳入工具草案的检查项目,并确定其格式;(5)在新的卫生系统评价中对工具草案进行前瞻性测试,以便根据用户反馈进行完善。我们预计,INSPECT-SR工具将帮助研究人员识别有问题的研究,并通过保护患者免受虚假数据对其医疗保健的影响来帮助患者。

伦理与传播

使用了曼彻斯特大学伦理决策工具,结果表明该项目(2022年9月30日)无需伦理批准,该项目包括二次研究以及对专业人员关于与其专业知识相关主题的调查。将从所有调查参与者处获得知情同意。所有结果将作为开放获取文章发表。最终工具将免费提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc2a/10936473/eba3871e7759/bmjopen-2024-084164f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验