Suppr超能文献

通过可解释人工智能识别和解读步态分析特征及足部状况。

Identification and interpretation of gait analysis features and foot conditions by explainable AI.

作者信息

Özateş Mustafa Erkam, Yaman Alper, Salami Firooz, Campos Sarah, Wolf Sebastian I, Schneider Urs

机构信息

Fraunhofer IPA, Nobelstrasse 12, Stuttgart, Germany.

Clinic for Orthopedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.

出版信息

Sci Rep. 2024 Mar 12;14(1):5998. doi: 10.1038/s41598-024-56656-4.

Abstract

Clinical gait analysis is a crucial step for identifying foot disorders and planning surgery. Automating this process is essential for efficiently assessing the substantial amount of gait data. In this study, we explored the potential of state-of-the-art machine learning (ML) and explainable artificial intelligence (XAI) algorithms to automate all various steps involved in gait analysis for six specific foot conditions. To address the complexity of gait data, we manually created new features, followed by recursive feature elimination using Support Vector Machines (SVM) and Random Forests (RF) to eliminate low-variance features. SVM, RF, K-nearest Neighbor (KNN), and Logistic Regression (LREGR) were compared for classification, with a Majority Voting (MV) model combining trained models. KNN and MV achieved mean balanced accuracy, recall, precision, and F1 score of 0.87. All models were interpreted using Local Interpretable Model-agnostic Explanation (LIME) method and the five most relevant features were identified for each foot condition. High success scores indicate a strong relationship between selected features and foot conditions, potentially indicating clinical relevance. The proposed ML pipeline, adaptable for other foot conditions, showcases its potential in aiding experts in foot condition identification and planning surgeries.

摘要

临床步态分析是识别足部疾病和规划手术的关键步骤。自动化这一过程对于有效评估大量步态数据至关重要。在本研究中,我们探索了先进的机器学习(ML)和可解释人工智能(XAI)算法在针对六种特定足部疾病的步态分析中自动执行所有不同步骤的潜力。为解决步态数据的复杂性问题,我们手动创建了新特征,随后使用支持向量机(SVM)和随机森林(RF)进行递归特征消除,以去除低方差特征。比较了SVM、RF、K近邻(KNN)和逻辑回归(LREGR)进行分类的效果,并采用多数投票(MV)模型组合训练好的模型。KNN和MV的平均平衡准确率、召回率、精确率和F1分数达到了0.87。所有模型均使用局部可解释模型无关解释(LIME)方法进行解释,并针对每种足部疾病确定了五个最相关的特征。高成功分数表明所选特征与足部疾病之间存在密切关系,可能具有临床相关性。所提出的ML流程适用于其他足部疾病,展示了其在协助专家识别足部疾病和规划手术方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe4/10933258/b52f39f4f706/41598_2024_56656_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验