Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
Department of Electrical Engineering, Qatar University, Doha 2713, Qatar.
Sensors (Basel). 2022 May 5;22(9):3507. doi: 10.3390/s22093507.
Diabetic neuropathy (DN) is one of the prevalent forms of neuropathy that involves alterations in biomechanical changes in the human gait. Diabetic foot ulceration (DFU) is one of the pervasive types of complications that arise due to DN. In the literature, for the last 50 years, researchers have been trying to observe the biomechanical changes due to DN and DFU by studying muscle electromyography (EMG) and ground reaction forces (GRF). However, the literature is contradictory. In such a scenario, we propose using Machine learning techniques to identify DN and DFU patients by using EMG and GRF data. We collected a dataset from the literature which involves three patient groups: Control (n = 6), DN (n = 6), and previous history of DFU (n = 9) and collected three lower limb muscles EMG (tibialis anterior (TA), vastus lateralis (VL), gastrocnemius lateralis (GL)), and three GRF components (GRFx, GRFy, and GRFz). Raw EMG and GRF signals were preprocessed, and different feature extraction techniques were applied to extract the best features from the signals. The extracted feature list was ranked using four different feature ranking techniques, and highly correlated features were removed. In this study, we considered different combinations of muscles and GRF components to find the best performing feature list for the identification of DN and DFU. We trained eight different conventional ML models: Discriminant analysis classifier (DAC), Ensemble classification model (ECM), Kernel classification model (KCM), k-nearest neighbor model (KNN), Linear classification model (LCM), Naive Bayes classifier (NBC), Support vector machine classifier (SVM), and Binary decision classification tree (BDC), to find the best-performing algorithm and optimized that model. We trained the optimized the ML algorithm for different combinations of muscles and GRF component features, and the performance matrix was evaluated. Our study found the KNN algorithm performed well in identifying DN and DFU, and we optimized it before training. We found the best accuracy of 96.18% for EMG analysis using the top 22 features from the chi-square feature ranking technique for features from GL and VL muscles combined. In the GRF analysis, the model showed 98.68% accuracy using the top 7 features from the Feature selection using neighborhood component analysis for the feature combinations from the GRFx-GRFz signal. In conclusion, our study has shown a potential solution for ML application in DN and DFU patient identification using EMG and GRF parameters. With careful signal preprocessing with strategic feature extraction from the biomechanical parameters, optimization of the ML model can provide a potential solution in the diagnosis and stratification of DN and DFU patients from the EMG and GRF signals.
糖尿病神经病变(DN)是最常见的神经病变形式之一,涉及人体步态中生物力学变化的改变。糖尿病足溃疡(DFU)是由于 DN 引起的普遍并发症之一。在过去的 50 年文献中,研究人员一直试图通过研究肌肉肌电图(EMG)和地面反力(GRF)来观察由于 DN 和 DFU 引起的生物力学变化。然而,文献中的结果是相互矛盾的。在这种情况下,我们建议使用机器学习技术通过使用 EMG 和 GRF 数据来识别 DN 和 DFU 患者。我们从文献中收集了一个数据集,其中涉及三组患者:对照组(n=6)、DN 组(n=6)和既往 DFU 病史组(n=9),并收集了三组下肢肌肉的 EMG(胫骨前肌(TA)、股外侧肌(VL)、腓肠肌外侧肌(GL))和三组 GRF 成分(GRFx、GRFy 和 GRFz)。原始的 EMG 和 GRF 信号进行了预处理,并应用了不同的特征提取技术从信号中提取最佳特征。使用四种不同的特征排序技术对提取的特征列表进行了排序,并去除了高度相关的特征。在这项研究中,我们考虑了不同的肌肉和 GRF 成分组合,以找到用于识别 DN 和 DFU 的最佳特征列表。我们训练了八种不同的传统 ML 模型:判别分析分类器(DAC)、集成分类模型(ECM)、核分类模型(KCM)、k-最近邻模型(KNN)、线性分类模型(LCM)、朴素贝叶斯分类器(NBC)、支持向量机分类器(SVM)和二进制决策分类树(BDC),以找到表现最佳的算法并对其进行优化。我们针对不同的肌肉和 GRF 成分特征组合训练了优化后的 ML 算法,并对性能矩阵进行了评估。我们的研究发现 KNN 算法在识别 DN 和 DFU 方面表现良好,并在训练前对其进行了优化。我们发现,使用来自 GL 和 VL 肌肉的卡方特征排序技术从特征中提取的前 22 个特征,对 GL 和 VL 肌肉的 EMG 分析的最佳准确度为 96.18%。在 GRF 分析中,模型使用来自 GRFx-GRFz 信号的特征选择使用邻域成分分析的前 7 个特征,准确度为 98.68%。总之,我们的研究表明,使用 EMG 和 GRF 参数的机器学习应用在 DN 和 DFU 患者识别方面提供了一种潜在的解决方案。通过对生物力学参数进行仔细的信号预处理和策略性特征提取,对 ML 模型进行优化,可以为从 EMG 和 GRF 信号中诊断和分层 DN 和 DFU 患者提供潜在的解决方案。