Suppr超能文献

深度学习揭示了在两个不同步态实验室评估的健康儿童的两个对照样本的运动学和动力学步态周期时间序列之间的差异。

Deep Learning Unravels Differences Between Kinematic and Kinetic Gait Cycle Time Series from Two Control Samples of Healthy Children Assessed in Two Different Gait Laboratories.

作者信息

de Gorostegui Alfonso, Kiernan Damien, Martín-Gonzalo Juan-Andrés, López-López Javier, Pulido-Valdeolivas Irene, Rausell Estrella, Zanin Massimiliano, Gómez-Andrés David

机构信息

PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain.

Department of Anatomy, Histology & Neuroscience, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.

出版信息

Sensors (Basel). 2024 Dec 27;25(1):110. doi: 10.3390/s25010110.

Abstract

We investigate the application of deep learning in comparing gait cycle time series from two groups of healthy children, each assessed in different gait laboratories. Both laboratories used similar gait analysis protocols with minimal differences in data collection. Utilizing a ResNet-based deep learning model, we successfully identified the source laboratory of each dataset, achieving a high classification accuracy across multiple gait parameters. To address the inter-laboratory differences, we explored various pre-processing methods and time series properties that may have been detected by the algorithm. We found that the standardization of the time series values was a successful approach to decrease the ability of the model to distinguish between the two centers. Our findings also reveal that differences in the power spectra and autocorrelation structures of the datasets play a significant role in the model performance. Our study emphasizes the importance of standardized protocols and robust data pre-processing to enhance the transferability of machine learning models across clinical settings, particularly for deep learning approaches.

摘要

我们研究了深度学习在比较两组健康儿童的步态周期时间序列中的应用,这两组儿童分别在不同的步态实验室进行评估。两个实验室都使用了相似的步态分析方案,数据收集方面差异极小。利用基于残差网络(ResNet)的深度学习模型,我们成功识别出每个数据集的来源实验室,在多个步态参数上实现了较高的分类准确率。为了解决实验室间的差异,我们探索了算法可能检测到的各种预处理方法和时间序列特性。我们发现,时间序列值的标准化是一种成功的方法,可以降低模型区分两个中心的能力。我们的研究结果还表明,数据集的功率谱和自相关结构差异在模型性能中起着重要作用。我们的研究强调了标准化方案和强大的数据预处理对于提高机器学习模型在临床环境中的可转移性的重要性,特别是对于深度学习方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be1d/11723378/e40be9d175dd/sensors-25-00110-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验