Suppr超能文献

用脱水桃干组合增强曲奇配方:一种用于技术质量评估和优化的机器学习方法

Enhancing Cookie Formulations with Combined Dehydrated Peach: A Machine Learning Approach for Technological Quality Assessment and Optimization.

作者信息

Lončar Biljana, Pezo Lato, Knežević Violeta, Nićetin Milica, Filipović Jelena, Petković Marko, Filipović Vladimir

机构信息

Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.

Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Serbia.

出版信息

Foods. 2024 Mar 2;13(5):782. doi: 10.3390/foods13050782.

Abstract

This study focuses on predicting and optimizing the quality parameters of cookies enriched with dehydrated peach through the application of Support Vector Machine (SVM) and Artificial Neural Network (ANN) models. The purpose of the study is to employ advanced machine learning techniques to understand the intricate relationships between input parameters, such as the presence of dehydrated peach and treatment methods (lyophilization and lyophilization with osmotic pretreatment), and output variables representing various quality aspects of cookies. For each of the 32 outputs, including the parameters of the basic chemical compositions of the cookie samples, selected mineral contents, moisture contents, baking characteristics, color properties, sensorial attributes, and antioxidant properties, separate models were constructed using SVMs and ANNs. Results showcase the efficiency of ANN models in predicting a diverse set of quality parameters with r up to 1.000, with SVM models exhibiting slightly higher coefficients of determination for specific variables with r reaching 0.981. The sensitivity analysis underscores the pivotal role of dehydrated peach and the positive influence of osmotic pretreatment on specific compositional attributes. Utilizing established Artificial Neural Network models, multi-objective optimization was conducted, revealing optimal formulation and factor values in cookie quality optimization. The optimal quantity of lyophilized peach with osmotic pretreatment for the cookie formulation was identified as 15%.

摘要

本研究聚焦于通过应用支持向量机(SVM)和人工神经网络(ANN)模型来预测和优化富含脱水桃饼干的质量参数。该研究的目的是运用先进的机器学习技术,以了解输入参数(如脱水桃的存在和处理方法(冻干以及渗透预处理后的冻干))与代表饼干各种质量方面的输出变量之间的复杂关系。对于32个输出中的每一个,包括饼干样品的基本化学成分参数、选定的矿物质含量、水分含量、烘焙特性、颜色特性、感官属性和抗氧化特性,分别使用支持向量机和人工神经网络构建模型。结果表明,人工神经网络模型在预测各种质量参数方面效率较高,相关系数r高达1.000,而支持向量机模型对特定变量的决定系数略高,r达到0.981。敏感性分析强调了脱水桃的关键作用以及渗透预处理对特定成分属性的积极影响。利用已建立的人工神经网络模型进行了多目标优化,揭示了饼干质量优化中的最佳配方和因子值。经渗透预处理的冻干桃在饼干配方中的最佳用量确定为15%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf1c/10931144/65bcad0635e6/foods-13-00782-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验