文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Lu-Labeled Iron Oxide Nanoparticles Functionalized with Doxorubicin and Bevacizumab as Nanobrachytherapy Agents against Breast Cancer.

作者信息

Salvanou Evangelia-Alexandra, Kolokithas-Ntoukas Argiris, Prokopiou Danai, Theodosiou Maria, Efthimiadou Eleni, Koźmiński Przemysław, Xanthopoulos Stavros, Avgoustakis Konstantinos, Bouziotis Penelope

机构信息

Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15341 Athens, Greece.

Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece.

出版信息

Molecules. 2024 Feb 27;29(5):1030. doi: 10.3390/molecules29051030.


DOI:10.3390/molecules29051030
PMID:38474542
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10934748/
Abstract

The use of conventional methods for the treatment of cancer, such as chemotherapy or radiotherapy, and approaches such as brachytherapy in conjunction with the unique properties of nanoparticles could enable the development of novel theranostic agents. The aim of our current study was to evaluate the potential of iron oxide nanoparticles, coated with alginic acid and polyethylene glycol, functionalized with the chemotherapeutic agent doxorubicin and the monoclonal antibody bevacizumab, to serve as a nanoradiopharmaceutical agent against breast cancer. Direct radiolabeling with the therapeutic isotope Lutetium-177 (Lu) resulted in an additional therapeutic effect. Functionalization was accomplished at high percentages and radiolabeling was robust. The high cytotoxic effect of our radiolabeled and non-radiolabeled nanostructures was proven in vitro against five different breast cancer cell lines. The ex vivo biodistribution in tumor-bearing mice was investigated with three different ways of administration. The intratumoral administration of our functionalized radionanoconjugates showed high tumor accumulation and retention at the tumor site. Finally, our therapeutic efficacy study performed over a 50-day period against an aggressive triple-negative breast cancer cell line (4T1) demonstrated enhanced tumor growth retention, thus identifying the developed nanoparticles as a promising nanobrachytherapy agent against breast cancer.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/5ac9014e3b39/molecules-29-01030-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/6f66ca7d9f3d/molecules-29-01030-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/25f4ab6bcea9/molecules-29-01030-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/584ca376f52a/molecules-29-01030-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/1c7ce114c07b/molecules-29-01030-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/aeb5af7c9ee5/molecules-29-01030-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/785c647e41b7/molecules-29-01030-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/ff75684963ef/molecules-29-01030-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/430bec543414/molecules-29-01030-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/97804adca903/molecules-29-01030-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/26d9e0fa3a27/molecules-29-01030-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/0107b6985b18/molecules-29-01030-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/bb73ec56b892/molecules-29-01030-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/9685982b913d/molecules-29-01030-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/fa8c837168db/molecules-29-01030-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/8a1c53a6bdf3/molecules-29-01030-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/ed87d994e2cd/molecules-29-01030-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/fe58fb59ccb4/molecules-29-01030-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/0c6f4cba999a/molecules-29-01030-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/0770be0ce8c2/molecules-29-01030-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/1f08f641da26/molecules-29-01030-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/c71923736360/molecules-29-01030-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/1c21d0f91a95/molecules-29-01030-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/f4712ce5d806/molecules-29-01030-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/a9d09b9f3a9a/molecules-29-01030-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/5ac9014e3b39/molecules-29-01030-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/6f66ca7d9f3d/molecules-29-01030-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/25f4ab6bcea9/molecules-29-01030-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/584ca376f52a/molecules-29-01030-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/1c7ce114c07b/molecules-29-01030-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/aeb5af7c9ee5/molecules-29-01030-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/785c647e41b7/molecules-29-01030-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/ff75684963ef/molecules-29-01030-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/430bec543414/molecules-29-01030-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/97804adca903/molecules-29-01030-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/26d9e0fa3a27/molecules-29-01030-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/0107b6985b18/molecules-29-01030-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/bb73ec56b892/molecules-29-01030-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/9685982b913d/molecules-29-01030-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/fa8c837168db/molecules-29-01030-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/8a1c53a6bdf3/molecules-29-01030-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/ed87d994e2cd/molecules-29-01030-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/fe58fb59ccb4/molecules-29-01030-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/0c6f4cba999a/molecules-29-01030-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/0770be0ce8c2/molecules-29-01030-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/1f08f641da26/molecules-29-01030-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/c71923736360/molecules-29-01030-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/1c21d0f91a95/molecules-29-01030-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/f4712ce5d806/molecules-29-01030-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/a9d09b9f3a9a/molecules-29-01030-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5a/10934748/5ac9014e3b39/molecules-29-01030-g025.jpg

相似文献

[1]
Lu-Labeled Iron Oxide Nanoparticles Functionalized with Doxorubicin and Bevacizumab as Nanobrachytherapy Agents against Breast Cancer.

Molecules. 2024-2-27

[2]
Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with Ga and Lu as Potential Theranostic Agents.

Nanomaterials (Basel). 2022-7-20

[3]
Synthesis, Characterization, and Therapeutic Efficacy of Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors.

Pharmaceutics. 2023-7-13

[4]
Tc-Radiolabeled Silica Nanocarriers for Targeted Detection and Treatment of HER2-Positive Breast Cancer.

Int J Nanomedicine. 2021

[5]
Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.

Breast Cancer Res. 2015-5-13

[6]
Synthesis, characterization and theranostic evaluation of Indium-111 labeled multifunctional superparamagnetic iron oxide nanoparticles.

Nucl Med Biol. 2015-2

[7]
Blocking Interleukin-4 Receptor α Using Polyethylene Glycol Functionalized Superparamagnetic Iron Oxide Nanocarriers to Inhibit Breast Cancer Cell Proliferation.

Cancer Res Treat. 2017-4

[8]
Targeted treatment of triple-negative-breast cancer through pH-triggered tumour associated macrophages using smart theranostic nanoformulations.

Int J Pharm. 2023-2-5

[9]
A Comparative Study of Receptor-Targeted Magnetosome and HSA-Coated Iron Oxide Nanoparticles as MRI Contrast-Enhancing Agent in Animal Cancer Model.

Appl Biochem Biotechnol. 2017-10-30

[10]
Cetuximab-Coated Thermo-Sensitive Liposomes Loaded with Magnetic Nanoparticles and Doxorubicin for Targeted EGFR-Expressing Breast Cancer Combined Therapy.

Int J Nanomedicine. 2020-10-23

引用本文的文献

[1]
Current landscape and future directions of targeted-alpha-therapy for glioblastoma treatment.

Theranostics. 2025-3-31

[2]
Terbium-Labeled Gold Nanoparticles as Nanoscale Brachytherapy Agents Against Breast Cancer.

Materials (Basel). 2025-1-8

[3]
Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials.

RSC Adv. 2024-12-12

[4]
Lu-SN201 nanoparticle shows superior anti-tumor efficacy over conventional cancer drugs in 4T1 orthotopic model.

Invest New Drugs. 2024-8

本文引用的文献

[1]
Cancer Brachytherapy at the Nanoscale: An Emerging Paradigm.

Chem Biomed Imaging. 2023-11-21

[2]
Radiometals in Imaging and Therapy: Highlighting Two Decades of Research.

Pharmaceuticals (Basel). 2023-10-13

[3]
Novel radionuclides for use in Nuclear Medicine in Europe: where do we stand and where do we go?

EJNMMI Radiopharm Chem. 2023-10-12

[4]
Improvement of the Effectiveness of HER2+ Cancer Therapy by Use of Doxorubicin and Trastuzumab Modified Radioactive Gold Nanoparticles.

Mol Pharm. 2023-9-4

[5]
Developments in Lu-based radiopharmaceutical therapy and dosimetry.

Front Chem. 2023-7-31

[6]
In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications.

Int J Nanomedicine. 2023

[7]
Synthesis, Characterization, and Therapeutic Efficacy of Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors.

Pharmaceutics. 2023-7-13

[8]
Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts.

Cancer Nanotechnol. 2023

[9]
Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with Ga and Lu as Potential Theranostic Agents.

Nanomaterials (Basel). 2022-7-20

[10]
90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours.

Nanotechnology. 2022-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索