文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

镓和镥放射性标记的氧化铁纳米颗粒作为潜在诊疗剂的初步评估

Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with Ga and Lu as Potential Theranostic Agents.

作者信息

Salvanou Evangelia-Alexandra, Kolokithas-Ntoukas Argiris, Liolios Christos, Xanthopoulos Stavros, Paravatou-Petsotas Maria, Tsoukalas Charalampos, Avgoustakis Konstantinos, Bouziotis Penelope

机构信息

Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15341 Athens, Greece.

Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece.

出版信息

Nanomaterials (Basel). 2022 Jul 20;12(14):2490. doi: 10.3390/nano12142490.


DOI:10.3390/nano12142490
PMID:35889715
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9321329/
Abstract

Theranostic radioisotope pairs such as Gallium-68 (Ga) for Positron Emission Tomography (PET) and Lutetium-177 (Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed colloidal nanocrystal clusters (co-CNCs) comprised of iron oxide nanoparticles, coated with alginic acid (MA) and stabilized by a layer of polyethylene glycol (MAPEG) to be directly radiolabeled with Ga and its therapeutic analog Lu. Ga/Lu- MA and MAPEG were investigated for their in vitro stability. The biocompatibility of the non-radiolabeled nanoparticles, as well as the cytotoxicity of MA, MAPEG, and [Lu]Lu-MAPEG were assessed on 4T1 cells. Finally, the ex vivo biodistribution of the Ga-labeled NPs as well as [Lu]Lu-MAPEG was investigated in normal mice. Radiolabeling with both radioisotopes took place via a simple and direct labelling method without further purification. Hemocompatibility was verified for both NPs, while MTT studies demonstrated the non-cytotoxic profile of the nanocarriers and the dose-dependent toxicity for [Lu]Lu-MAPEG. The radiolabeled nanoparticles mainly accumulated in RES organs. Based on our preliminary results, we conclude that MAPEG could be further investigated as a theranostic agent for PET diagnosis and therapy of cancer.

摘要

用于正电子发射断层扫描(PET)的镓 - 68(Ga)和用于放射性同位素治疗的镥 - 177(Lu)等诊疗放射性同位素对,与纳米颗粒(NPs)结合,是癌症治疗中一个新兴的领域。目前的工作旨在证明由氧化铁纳米颗粒组成、包覆藻酸(MA)并由一层聚乙二醇(MAPEG)稳定的凝聚胶体纳米晶体簇(co - CNCs)能够直接用Ga及其治疗类似物Lu进行放射性标记。研究了Ga/Lu - MA和MAPEG的体外稳定性。在4T1细胞上评估了未放射性标记的纳米颗粒的生物相容性,以及MA、MAPEG和[Lu]Lu - MAPEG的细胞毒性。最后,在正常小鼠体内研究了Ga标记的NPs以及[Lu]Lu - MAPEG的体内生物分布。两种放射性同位素的放射性标记均通过简单直接的标记方法进行,无需进一步纯化。两种NPs均验证了血液相容性,而MTT研究表明纳米载体无细胞毒性,[Lu]Lu - MAPEG具有剂量依赖性毒性。放射性标记的纳米颗粒主要积聚在网状内皮系统(RES)器官中。基于我们的初步结果,我们得出结论,MAPEG可作为癌症PET诊断和治疗的诊疗剂进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/f72071824d1e/nanomaterials-12-02490-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/326dc56f7a1f/nanomaterials-12-02490-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/b6ad5e2c7144/nanomaterials-12-02490-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/272cd5285343/nanomaterials-12-02490-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/ff91da08d576/nanomaterials-12-02490-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/c799085c3818/nanomaterials-12-02490-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/1391e5a0dc12/nanomaterials-12-02490-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/1459fc1b886d/nanomaterials-12-02490-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/4754893f7338/nanomaterials-12-02490-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/24c1c53342d3/nanomaterials-12-02490-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/7263138f677d/nanomaterials-12-02490-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/5ef71cfee4be/nanomaterials-12-02490-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/86c7fd01bfd7/nanomaterials-12-02490-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/5b2def59bd51/nanomaterials-12-02490-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/f72071824d1e/nanomaterials-12-02490-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/326dc56f7a1f/nanomaterials-12-02490-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/b6ad5e2c7144/nanomaterials-12-02490-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/272cd5285343/nanomaterials-12-02490-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/ff91da08d576/nanomaterials-12-02490-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/c799085c3818/nanomaterials-12-02490-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/1391e5a0dc12/nanomaterials-12-02490-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/1459fc1b886d/nanomaterials-12-02490-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/4754893f7338/nanomaterials-12-02490-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/24c1c53342d3/nanomaterials-12-02490-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/7263138f677d/nanomaterials-12-02490-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/5ef71cfee4be/nanomaterials-12-02490-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/86c7fd01bfd7/nanomaterials-12-02490-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/5b2def59bd51/nanomaterials-12-02490-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fd/9321329/f72071824d1e/nanomaterials-12-02490-g014.jpg

相似文献

[1]
Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with Ga and Lu as Potential Theranostic Agents.

Nanomaterials (Basel). 2022-7-20

[2]
Lu-Labeled Iron Oxide Nanoparticles Functionalized with Doxorubicin and Bevacizumab as Nanobrachytherapy Agents against Breast Cancer.

Molecules. 2024-2-27

[3]
68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies.

J Nucl Med. 2015-6-18

[4]
Synthesis and Evaluation of Ga- and Lu-Labeled ()- vs ()-DOTAGA Prostate-Specific Membrane Antigen-Targeting Derivatives.

Mol Pharm. 2020-12-7

[5]
A Proof-of-Concept Study on the Theranostic Potential of Lu-labeled Biocompatible Covalent Polymer Nanoparticles for Cancer Targeted Radionuclide Therapy.

Chemistry. 2024-2-12

[6]
Ga, Sc and Lu-labeled AAZTA-PSMA-617: synthesis, radiolabeling, stability and cell binding compared to DOTA-PSMA-617 analogues.

EJNMMI Radiopharm Chem. 2020-11-26

[7]
Radiolabeling of lipid-based nanoparticles for diagnostics and therapeutic applications: a comparison using different radiometals.

J Liposome Res. 2010-9

[8]
Chelator-Free/Chelator-Mediated Radiolabeling of Colloidally Stabilized Iron Oxide Nanoparticles for Biomedical Imaging.

Nanomaterials (Basel). 2021-6-25

[9]
A Theranostic Cellulose Nanocrystal-Based Drug Delivery System with Enhanced Retention in Pulmonary Metastasis of Melanoma.

Small. 2021-5

[10]
Synthesis, Radiolabeling, and Preclinical Evaluation of Ga/Lu-Labeled Leuprolide Peptide Analog for the Detection of Breast Cancer.

Cancer Biother Radiopharm. 2022-6

引用本文的文献

[1]
Radionuclide-Labeled Biomaterials: A Novel Strategy for Tumor-Targeted Therapy.

Biomimetics (Basel). 2025-6-11

[2]
Current landscape and future directions of targeted-alpha-therapy for glioblastoma treatment.

Theranostics. 2025-3-31

[3]
Synthesis and Preclinical Evaluation of a Bispecific PSMA-617/RM2 Heterodimer Targeting Prostate Cancer.

ACS Med Chem Lett. 2024-10-18

[4]
Radiolabeled iron oxide nanoparticles functionalized with PSMA/BN ligands for dual-targeting of prostate cancer.

Front Nucl Med. 2023-9-20

[5]
Recent Advances in Metal Oxide and Phosphate Nanomaterials Radiolabeling with Medicinal Nuclides.

ACS Omega. 2024-9-12

[6]
Developments in radionanotheranostic strategies for precision diagnosis and treatment of prostate cancer.

EJNMMI Radiopharm Chem. 2024-8-24

[7]
In Vitro Assessment of Lu-Labeled Trastuzumab-Targeted Mesoporous Carbon@Silica Nanostructure for the Treatment of HER2-Positive Breast Cancer.

Pharmaceuticals (Basel). 2024-6-5

[8]
Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures.

J Funct Biomater. 2024-6-19

[9]
Radiation nanomedicines for cancer treatment: a scientific journey and view of the landscape.

EJNMMI Radiopharm Chem. 2024-5-4

[10]
Lu-Labeled Iron Oxide Nanoparticles Functionalized with Doxorubicin and Bevacizumab as Nanobrachytherapy Agents against Breast Cancer.

Molecules. 2024-2-27

本文引用的文献

[1]
Iron oxide nanoflowers encapsulated in thermosensitive fluorescent liposomes for hyperthermia treatment of lung adenocarcinoma.

Sci Rep. 2022-5-24

[2]
Targeted Endoradiotherapy with LuO-iPSMA/-iFAP Nanoparticles Activated by Neutron Irradiation: Preclinical Evaluation and First Patient Image.

Pharmaceutics. 2022-3-27

[3]
Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives.

Pharmaceutics. 2022-1-16

[4]
Recent Advances in Brachytherapy Using Radioactive Nanoparticles: An Alternative to Seed-Based Brachytherapy.

Front Oncol. 2021-11-24

[5]
Nanoparticles for Cancer Therapy: Current Progress and Challenges.

Nanoscale Res Lett. 2021-12-5

[6]
Synthesis and In Vitro Evaluation of Gold Nanoparticles Functionalized with Thiol Ligands for Robust Radiolabeling with Tc.

Nanomaterials (Basel). 2021-9-15

[7]
Chelator-Free/Chelator-Mediated Radiolabeling of Colloidally Stabilized Iron Oxide Nanoparticles for Biomedical Imaging.

Nanomaterials (Basel). 2021-6-25

[8]
Non-FDG PET/CT in Diagnostic Oncology: a pictorial review.

Eur J Hybrid Imaging. 2019-11-29

[9]
Condensed Clustered Iron Oxides for Ultrahigh Photothermal Conversion and Multimodal Imaging.

ACS Appl Mater Interfaces. 2021-6-30

[10]
Preparation and Preliminary Evaluation of Neurotensin Radiolabelled with Ga and Lu as Potential Theranostic Agent for Colon Cancer.

Pharmaceutics. 2021-4-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索