文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts.

作者信息

Goel Muskan, Mackeyev Yuri, Krishnan Sunil

机构信息

Amity School of Applied Sciences, Amity University, Gurugram, Haryana 122413 India.

Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA.

出版信息

Cancer Nanotechnol. 2023;14(1):15. doi: 10.1186/s12645-023-00165-y. Epub 2023 Feb 27.


DOI:10.1186/s12645-023-00165-y
PMID:36865684
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9968708/
Abstract

In the last three decades, radiopharmaceuticals have proven their effectiveness for cancer diagnosis and therapy. In parallel, the advances in nanotechnology have fueled a plethora of applications in biology and medicine. A convergence of these disciplines has emerged more recently with the advent of nanotechnology-aided radiopharmaceuticals. Capitalizing on the unique physical and functional properties of nanoparticles, radiolabeled nanomaterials or nano-radiopharmaceuticals have the potential to enhance imaging and therapy of human diseases. This article provides an overview of various radionuclides used in diagnostic, therapeutic, and theranostic applications, radionuclide production through different techniques, conventional radionuclide delivery systems, and advancements in the delivery systems for nanomaterials. The review also provides insights into fundamental concepts necessary to improve currently available radionuclide agents and formulate new nano-radiopharmaceuticals.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/cfe035f0dab3/12645_2023_165_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/9739cb6cd8d9/12645_2023_165_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/f004f1aa2470/12645_2023_165_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/6758880a3019/12645_2023_165_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/57a64edd745d/12645_2023_165_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/58e40796c05f/12645_2023_165_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/ddec55da5e34/12645_2023_165_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/4abe73d8b036/12645_2023_165_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/9020c763bf72/12645_2023_165_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/cfe035f0dab3/12645_2023_165_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/9739cb6cd8d9/12645_2023_165_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/f004f1aa2470/12645_2023_165_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/6758880a3019/12645_2023_165_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/57a64edd745d/12645_2023_165_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/58e40796c05f/12645_2023_165_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/ddec55da5e34/12645_2023_165_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/4abe73d8b036/12645_2023_165_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/9020c763bf72/12645_2023_165_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/9968708/cfe035f0dab3/12645_2023_165_Fig9_HTML.jpg

相似文献

[1]
Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts.

Cancer Nanotechnol. 2023

[2]
Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology.

EJNMMI Radiopharm Chem. 2022-4-25

[3]
Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials.

Int J Mol Sci. 2019-5-10

[4]
Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment.

J Drug Target. 2015-4

[5]
An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions.

J Biomed Mater Res A. 2018-10-25

[6]
The Impact of Radiolabeled Nanomaterials.

Curr Radiopharm. 2023

[7]
Nano-Based Theranostic Tools for the Detection and Elimination of Senescent Cells.

Cells. 2020-12-10

[8]
Convergence of nanotechnology with radiation therapy-insights and implications for clinical translation.

Transl Cancer Res. 2013-8-23

[9]
Nano-radiopharmaceuticals as therapeutic agents.

Front Med (Lausanne). 2024-3-15

[10]
Copper radiopharmaceuticals for theranostic applications.

Eur J Med Chem. 2018-8-23

引用本文的文献

[1]
Radionuclide-labeled nanomaterials for tumor therapy: Recent progress and perspectives.

Mater Today Bio. 2025-8-5

[2]
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications.

Pharmaceutics. 2025-7-14

[3]
Nuclear Nanomedicines: Utilization of Radiolabelling Strategies, Drug Formulation, Delivery, and Regulatory Aspects for Disease Management.

Curr Radiopharm. 2025

[4]
Advanced Strategies in Enhancing the Hepatoprotective Efficacy of Natural Products: Integrating Nanotechnology, Genomics, and Mechanistic Insights.

ACS Biomater Sci Eng. 2025-5-12

[5]
Nano-Radiopharmaceuticals in Colon Cancer: Current Applications, Challenges, and Future Directions.

Pharmaceuticals (Basel). 2025-2-14

[6]
Recent Advancements of Nanomedicine in Breast Cancer Surgery.

Int J Nanomedicine. 2024-12-31

[7]
Harnessing Radiation for Nanotechnology: A Comprehensive Review of Techniques, Innovations, and Application.

Nanomaterials (Basel). 2024-12-21

[8]
Recent Advances in Metal Oxide and Phosphate Nanomaterials Radiolabeling with Medicinal Nuclides.

ACS Omega. 2024-9-12

[9]
Developments in radionanotheranostic strategies for precision diagnosis and treatment of prostate cancer.

EJNMMI Radiopharm Chem. 2024-8-24

[10]
Nanomaterials in Targeting Cancer Cells with Nanotherapeutics: Transitioning Towards Responsive Systems.

Curr Pharm Des. 2024

本文引用的文献

[1]
Biodistribution of Tc-PLA/PVA/Atezolizumab nanoparticles for non-small cell lung cancer diagnosis.

Eur J Pharm Biopharm. 2022-7

[2]
Advancing Chelation Strategies for Large Metal Ions for Nuclear Medicine Applications.

Acc Chem Res. 2022-3-15

[3]
11C-acetate positron emission tomography is more precise than 18F-fluorodeoxyglucose positron emission tomography in evaluating tumor burden and predicting disease risk of multiple myeloma.

Sci Rep. 2021-11-12

[4]
Engineering of Lu-labeled gold encapsulated into dendrimeric nanomaterials for the treatment of lung cancer.

J Biomater Sci Polym Ed. 2022-2

[5]
Dynamic C-Methionine PET-CT: Prognostic Factors for Disease Progression and Survival in Patients with Suspected Glioma Recurrence.

Cancers (Basel). 2021-9-24

[6]
The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application.

J Pers Med. 2021-8-6

[7]
Intratumoral administration of astatine-211-labeled gold nanoparticle for alpha therapy.

J Nanobiotechnology. 2021-7-28

[8]
A Novel Reagent for Radioiodine Labeling of New Chemical Entities (NCEs) and Biomolecules.

Molecules. 2021-7-18

[9]
Vibrational spectroscopy for decoding cancer microbiota interactions: Current evidence and future perspective.

Semin Cancer Biol. 2022-11

[10]
Emerging chelators for nuclear imaging.

Curr Opin Chem Biol. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索