Suppr超能文献

PCGen:一种完全可并行化的点云生成模型。

PCGen: A Fully Parallelizable Point Cloud Generative Model.

作者信息

Vercheval Nicolas, Royen Remco, Munteanu Adrian, Pižurica Aleksandra

机构信息

Research Group for Artificial Intelligence and Sparse Modelling (GAIM), Department of Telecommunications and Information Processing, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium.

Clifford Research Group, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium.

出版信息

Sensors (Basel). 2024 Feb 22;24(5):1414. doi: 10.3390/s24051414.

Abstract

Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing. Current state-of-the-art point cloud random generation methods are not fast enough for these applications. We introduce a vector-quantized variational autoencoder model (VQVAE) that can synthesize high-quality point clouds in milliseconds. Unlike previous work in VQVAEs, our model offers a compact sample representation suitable for conditional generation and data exploration with potential applications in rapid prototyping. We achieve this result by combining architectural improvements with an innovative approach for probabilistic random generation. First, we rethink current parallel point cloud autoencoder structures, and we propose several solutions to improve robustness, efficiency and reconstruction quality. Notable contributions in the decoder architecture include an innovative computation layer to process the shape semantic information, an attention mechanism that helps the model focus on different areas and a filter to cover possible sampling errors. Secondly, we introduce a parallel sampling strategy for VQVAE models consisting of a double encoding system, where a variational autoencoder learns how to generate the complex discrete distribution of the VQVAE, not only allowing quick inference but also describing the shape with a few global variables. We compare the proposed decoder and our VQVAE model with established and concurrent work, and we prove, one by one, the validity of the single contributions.

摘要

生成模型有潜力彻底改变3D扩展现实。一个主要障碍是增强现实和虚拟现实需要实时计算。当前最先进的点云随机生成方法对于这些应用来说速度不够快。我们引入了一种矢量量化变分自编码器模型(VQVAE),它可以在几毫秒内合成高质量的点云。与之前在VQVAEs方面的工作不同,我们的模型提供了一种紧凑的样本表示,适用于条件生成和数据探索,在快速原型制作中有潜在应用。我们通过将架构改进与概率随机生成的创新方法相结合来实现这一结果。首先,我们重新思考当前的并行点云自动编码器结构,并提出了几种提高鲁棒性、效率和重建质量的解决方案。解码器架构中的显著贡献包括一个用于处理形状语义信息的创新计算层、一个帮助模型关注不同区域的注意力机制以及一个用于覆盖可能采样误差的滤波器。其次,我们为VQVAE模型引入了一种并行采样策略,该策略由一个双编码系统组成,其中一个变分自编码器学习如何生成VQVAE的复杂离散分布,这不仅允许快速推理,还能用几个全局变量描述形状。我们将提出的解码器和我们 的VQVAE模型与已有的和同期的工作进行比较,并逐一证明了各个贡献的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96cf/10934358/dea649ce7cf0/sensors-24-01414-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验