Suppr超能文献

使用双侧肌电可穿戴传感器检测心理干预。

Detecting Psychological Interventions Using Bilateral Electromyographic Wearable Sensors.

机构信息

Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.

Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, USA.

出版信息

Sensors (Basel). 2024 Feb 22;24(5):1425. doi: 10.3390/s24051425.

Abstract

This study investigated the impact of auditory stimuli on muscular activation patterns using wearable surface electromyography (EMG) sensors. Employing four key muscles (Sternocleidomastoid Muscle (SCM), Cervical Erector Muscle (CEM), Quadricep Muscles (QMs), and Tibialis Muscle (TM)) and time domain features, we differentiated the effects of four interventions: silence, music, positive reinforcement, and negative reinforcement. The results demonstrated distinct muscle responses to the interventions, with the SCM and CEM being the most sensitive to changes and the TM being the most active and stimulus dependent. Post hoc analyses revealed significant intervention-specific activations in the CEM and TM for specific time points and intervention pairs, suggesting dynamic modulation and time-dependent integration. Multi-feature analysis identified both statistical and Hjorth features as potent discriminators, reflecting diverse adaptations in muscle recruitment, activation intensity, control, and signal dynamics. These features hold promise as potential biomarkers for monitoring muscle function in various clinical and research applications. Finally, muscle-specific Random Forest classification achieved the highest accuracy and Area Under the ROC Curve for the TM, indicating its potential for differentiating interventions with high precision. This study paves the way for personalized neuroadaptive interventions in rehabilitation, sports science, ergonomics, and healthcare by exploiting the diverse and dynamic landscape of muscle responses to auditory stimuli.

摘要

本研究采用可穿戴表面肌电图(EMG)传感器,探讨了听觉刺激对肌肉激活模式的影响。研究选用了四块关键肌肉(胸锁乳突肌(SCM)、颈伸肌(CEM)、股四头肌(QMs)和胫骨前肌(TM))和时域特征,区分了四种干预措施(安静、音乐、正强化和负强化)的影响。结果表明,肌肉对干预措施有明显的反应,其中 SCM 和 CEM 对变化最敏感,TM 则最活跃且对刺激最依赖。事后分析表明,在特定时间点和干预对之间,CEM 和 TM 存在显著的干预特异性激活,提示存在动态调制和时变整合。多特征分析确定了 Hjorth 特征和统计特征都是有力的判别器,反映了肌肉募集、激活强度、控制和信号动态的多样化适应。这些特征有望成为监测各种临床和研究应用中肌肉功能的潜在生物标志物。最后,TM 的肌肉特异性随机森林分类达到了最高的准确性和 ROC 曲线下面积,表明其具有高精度区分干预措施的潜力。本研究通过利用听觉刺激对肌肉反应的多样化和动态特征,为康复、运动科学、工效学和医疗保健领域的个性化神经自适应干预铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa50/10934474/00960a5b94a1/sensors-24-01425-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验