Suppr超能文献

使用行走步态和安静平衡识别当前报告焦虑感的个体:一项使用机器学习的探索性研究。

Identifying Individuals Who Currently Report Feelings of Anxiety Using Walking Gait and Quiet Balance: An Exploratory Study Using Machine Learning.

机构信息

Department of Medicine, Lake Erie Osteopathic College of Medicine, Elmira, NY 14901, USA.

Department of Computer Science, George Mason University, Fairfax, VA 22030, USA.

出版信息

Sensors (Basel). 2022 Apr 20;22(9):3163. doi: 10.3390/s22093163.

Abstract

Literature suggests that anxiety affects gait and balance among young adults. However, previous studies using machine learning (ML) have only used gait to identify individuals who report feeling anxious. Therefore, the purpose of this study was to identify individuals who report feeling anxious at that time using a combination of gait and quiet balance ML. Using a cross-sectional design, participants (n = 88) completed the Profile of Mood Survey-Short Form (POMS-SF) to measure current feelings of anxiety and were then asked to complete a modified Clinical Test for Sensory Interaction in Balance (mCTSIB) and a two-minute walk around a 6 m track while wearing nine APDM mobility sensors. Results from our study finds that Random Forest classifiers had the highest median accuracy rate (75%) and the five top features for identifying anxious individuals were all gait parameters (turn angles, variance in neck, lumbar rotation, lumbar movement in the sagittal plane, and arm movement). Post-hoc analyses suggest that individuals who reported feeling anxious also walked using gait patterns most similar to older individuals who are fearful of falling. Additionally, we find that individuals who are anxious also had less postural stability when they had visual input; however, these individuals had less movement during postural sway when visual input was removed.

摘要

文献表明焦虑会影响年轻人的步态和平衡。然而,以前使用机器学习 (ML) 的研究仅使用步态来识别报告感到焦虑的个体。因此,本研究的目的是使用步态和安静平衡 ML 的组合来识别当时报告感到焦虑的个体。本研究采用横断面设计,参与者(n=88)完成了心境剖面图-短式(POMS-SF)以测量当前的焦虑感,然后要求他们完成改良临床感觉相互作用平衡测试(mCTSIB)并在佩戴九个 APDM 运动传感器的情况下围绕 6 m 轨道行走两分钟。我们的研究结果发现,随机森林分类器具有最高的中位数准确率(75%),用于识别焦虑个体的五个最重要特征均为步态参数(转角、颈部变化、腰椎旋转、腰椎矢状面运动和手臂运动)。事后分析表明,报告感到焦虑的个体在行走时也使用与害怕跌倒的老年人最相似的步态模式。此外,我们发现焦虑个体在有视觉输入时的姿势稳定性较差;但是,当去除视觉输入时,这些个体在姿势摆动期间的运动减少。

相似文献

2
Erratum.勘误
Mult Scler. 2016 Oct;22(12):NP9-NP11. doi: 10.1177/1352458515585718. Epub 2015 Jun 3.

本文引用的文献

6
Metabolomic Biomarkers in Anxiety Disorders.焦虑障碍的代谢组学生物标志物。
Int J Mol Sci. 2020 Jul 6;21(13):4784. doi: 10.3390/ijms21134784.
9
Toward Robust Anxiety Biomarkers: A Machine Learning Approach in a Large-Scale Sample.迈向稳健的焦虑生物标志物:大规模样本中的机器学习方法。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):799-807. doi: 10.1016/j.bpsc.2019.05.018. Epub 2019 Jun 21.
10
A meta-analysis of the relationship between anxiety and attentional control.焦虑与注意力控制关系的元分析
Clin Psychol Rev. 2019 Aug;72:101754. doi: 10.1016/j.cpr.2019.101754. Epub 2019 Jul 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验