Cho Jungsang, Turney Damon E, Yadav Gautam Ganapati, Nyce Michael, Wygant Bryan R, Lambert Timothy N, Banerjee Sanjoy
The CUNY Energy Institute, City University of New York, 160 Convent Ave, New York, NY 10031, USA.
Urban Electric Power, Pearl River, NY 10965, USA.
Polymers (Basel). 2024 Feb 28;16(5):658. doi: 10.3390/polym16050658.
Achieving commercially acceptable Zn-MnO rechargeable batteries depends on the reversibility of active zinc and manganese materials, and avoiding side reactions during the second electron reaction of MnO. Typically, liquid electrolytes such as potassium hydroxide (KOH) are used for Zn-MnO rechargeable batteries. However, it is known that using liquid electrolytes causes the formation of electrochemically inactive materials, such as precipitation MnO or ZnMnO resulting from the uncontrollable reaction of Mn dissolved species with zincate ions. In this paper, hydrogel electrolytes are tested for MnO electrodes undergoing two-electron cycling. Improved cell safety is achieved because the hydrogel electrolyte is non-spillable, according to standards from the US Department of Transportation (DOT). The cycling of "half cells" with advanced-formulation MnO cathodes paired with commercial NiOOH electrodes is tested with hydrogel and a normal electrolyte, to detect changes to the zincate crossover and reaction from anode to cathode. These half cells achieved ≥700 cycles with 99% coulombic efficiency and 63% energy efficiency at C/3 rates based on the second electron capacity of MnO. Other cycling tests with "full cells" of Zn anodes with the same MnO cathodes achieved ~300 cycles until reaching 50% capacity fade, a comparable performance to cells using liquid electrolyte. Electrodes dissected after cycling showed that the liquid electrolyte allowed Cu ions to migrate more than the hydrogel electrolyte. However, measurements of the Cu diffusion coefficient showed no difference between liquid and gel electrolytes; thus, it was hypothesized that the gel electrolytes reduced the occurrence of Cu short circuits by either (a) reducing electrode physical contact to the separator or (b) reducing electro-convective electrolyte transport that may be as important as diffusive transport.
实现具有商业可行性的锌-二氧化锰可充电电池取决于活性锌和锰材料的可逆性,以及避免二氧化锰二次电子反应过程中的副反应。通常,氢氧化钾(KOH)等液体电解质用于锌-二氧化锰可充电电池。然而,众所周知,使用液体电解质会导致形成电化学惰性材料,例如由于溶解的锰物种与锌酸盐离子的不可控反应而产生的沉淀二氧化锰或锌酸锰。在本文中,对经历双电子循环的二氧化锰电极测试了水凝胶电解质。根据美国运输部(DOT)的标准,由于水凝胶电解质不会溢出,因此提高了电池安全性。使用水凝胶和普通电解质测试了具有先进配方的二氧化锰阴极与商用氢氧化镍电极配对的“半电池”的循环,以检测锌酸盐交叉和从阳极到阴极的反应变化。基于二氧化锰的第二电子容量,这些半电池在C/3倍率下实现了≥700次循环,库仑效率为99%,能量效率为63%。使用相同二氧化锰阴极的锌阳极“全电池”的其他循环测试实现了约300次循环,直至容量衰减达到50%,这与使用液体电解质的电池性能相当。循环后解剖的电极表明,液体电解质比水凝胶电解质允许更多的铜离子迁移。然而,铜扩散系数的测量表明液体电解质和凝胶电解质之间没有差异;因此,据推测,凝胶电解质通过以下方式减少了铜短路的发生:(a)减少电极与隔膜的物理接触,或(b)减少可能与扩散传输同样重要的电对流电解质传输。