Suppr超能文献

纯血浆蛋白质组学:化腐朽为神奇。

Neat plasma proteomics: getting the best out of the worst.

作者信息

Metatla Ines, Roger Kevin, Chhuon Cerina, Ceccacci Sara, Chapelle Manuel, Demichev Vadim, Guerrera Ida Chiara

机构信息

Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France.

Bruker Daltonique SA, 34 Rue de l'Industrie, 67166, Wissembourg Cedex, France.

出版信息

Clin Proteomics. 2024 Mar 12;21(1):22. doi: 10.1186/s12014-024-09477-6.

Abstract

Plasma proteomics holds immense potential for clinical research and biomarker discovery, serving as a non-invasive "liquid biopsy" for tissue sampling. Mass spectrometry (MS)-based proteomics, thanks to improvement in speed and robustness, emerges as an ideal technology for exploring the plasma proteome for its unbiased and highly specific protein identification and quantification. Despite its potential, plasma proteomics is still a challenge due to the vast dynamic range of protein abundance, hindering the detection of less abundant proteins. Different approaches can help overcome this challenge. Conventional depletion methods face limitations in cost, throughput, accuracy, and off-target depletion. Nanoparticle-based enrichment shows promise in compressing dynamic range, but cost remains a constraint. Enrichment strategies for extracellular vesicles (EVs) can enhance plasma proteome coverage dramatically, but current methods are still too laborious for large series. Neat plasma remains popular for its cost-effectiveness, time efficiency, and low volume requirement. We used a test set of 33 plasma samples for all evaluations. Samples were digested using S-Trap and analyzed on Evosep One and nanoElute coupled to a timsTOF Pro using different elution gradients and ion mobility ranges. Data were mainly analyzed using library-free searches using DIA-NN. This study explores ways to improve proteome coverage in neat plasma both in MS data acquisition and MS data analysis. We demonstrate the value of sampling smaller hydrophilic peptides, increasing chromatographic separation, and using library-free searches. Additionally, we introduce the EV boost approach, that leverages on the extracellular vesicle fraction to enhance protein identification in neat plasma samples. Globally, our optimized analysis workflow allows the quantification of over 1000 proteins in neat plasma with a 24SPD throughput. We believe that these considerations can be of help independently of the LC-MS platform used.

摘要

血浆蛋白质组学在临床研究和生物标志物发现方面具有巨大潜力,可作为一种用于组织采样的非侵入性“液体活检”。基于质谱(MS)的蛋白质组学,由于速度和稳健性的提高,成为探索血浆蛋白质组的理想技术,因为它能够无偏且高度特异性地鉴定和定量蛋白质。尽管具有潜力,但由于蛋白质丰度的动态范围巨大,血浆蛋白质组学仍然是一个挑战,这阻碍了低丰度蛋白质的检测。不同的方法有助于克服这一挑战。传统的去除方法在成本、通量、准确性和非靶向去除方面存在局限性。基于纳米颗粒的富集在压缩动态范围方面显示出前景,但成本仍然是一个限制因素。细胞外囊泡(EV)的富集策略可以显著提高血浆蛋白质组的覆盖率,但目前的方法对于大量样本来说仍然过于繁琐。纯血浆因其成本效益、时间效率和低体积要求而仍然很受欢迎。我们使用一组33个血浆样本进行所有评估。样本使用S-Trap进行消化,并在Evosep One和nanoElute上进行分析,后者与配备不同洗脱梯度和离子淌度范围的timsTOF Pro联用。数据主要使用DIA-NN进行无库搜索分析。本研究探索了在MS数据采集和MS数据分析中提高纯血浆蛋白质组覆盖率的方法。我们展示了采样较小的亲水性肽、增加色谱分离以及使用无库搜索的价值。此外,我们引入了EV增强方法,该方法利用细胞外囊泡部分来增强纯血浆样本中的蛋白质鉴定。总体而言,我们优化的分析工作流程能够以24SPD的通量对纯血浆中的1000多种蛋白质进行定量。我们相信,这些考虑因素无论使用何种LC-MS平台都可能有所帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5b1/10935919/9726a4bf98a1/12014_2024_9477_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验