Suppr超能文献

用于预测女性青少年特发性脊柱侧凸患者Cobb角超过25度的机器学习算法。

Machine learning algorithms for predicting Cobb angle beyond 25 degrees in female adolescent idiopathic scoliosis patients.

作者信息

Ohyama Shuhei, Maki Satoshi, Kotani Toshiaki, Ogata Yosuke, Sakuma Tsuyoshi, Iijima Yasushi, Akazawa Tsutomu, Inage Kazuhide, Shiga Yasuhiro, Inoue Masahiro, Arai Takahito, Toshi Noriyasu, Tokeshi Soichiro, Okuyama Kohei, Tashiro Susumu, Suzuki Noritaka, Eguchi Yawara, Orita Sumihisa, Minami Shohei, Ohtori Seiji

机构信息

Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.

Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan.

出版信息

Spine (Phila Pa 1976). 2024 Mar 13. doi: 10.1097/BRS.0000000000004986.

Abstract

STUDY DESIGN

Retrospective cohort study.

OBJECTIVE

To develop a machine learning (ML) model that predicts the progression of AIS using minimal radiographs and simple questionnaires during the first visit.

SUMMARY OF BACKGROUND DATA

Several factors are associated with angle progression in patients with AIS. However, it is challenging to predict angular progression at the first visit.

METHODS

Among female patients with AIS treated at a single institution from July 2011 to February 2023, 1119 cases were studied. Patient data, including demographic and radiographic data based on anterior-posterior and lateral whole-spine radiographs, were collected at the first and last visits. The last visit was defined differently based on treatment plans. For patients slated for surgery or bracing, the last visit occurred just before these interventions. For others, it was their final visit before turning 18 years. Angular progression was defined as a Cobb angle greater than 25 degrees for each of the proximal thoracic (PT), main thoracic (MT), and thoracolumbar/lumbar (TLL) curves at the last visit. ML algorithms were employed to develop individual binary classification models for each type of curve (PT, MT, and TLL) using PyCaret in Python. Multiple models were explored and analyzed, with the selection of optimal models based on the area under the curve (AUC) and Recall scores. Feature importance was evaluated to understand the contribution of each feature to the model predictions.

RESULTS

For PT, MT, and TLL progression, the top-performing models exhibit AUC values of 0.94, 0.89, and 0.84, and achieve recall rates of 0.90, 0.85, and 0.81. The most significant factors predicting progression varied for each curve: initial Cobb angle for PT, presence of menarche for MT, and Risser grade for TLL.

CONCLUSIONS

This study introduces an ML-based model using simple data at the first visit to precisely predict angle progression in female patients with AIS.

摘要

研究设计

回顾性队列研究。

目的

开发一种机器学习(ML)模型,该模型使用首次就诊时最少的X光片和简单问卷来预测特发性脊柱侧弯(AIS)的进展情况。

背景数据总结

AIS患者的角度进展与多种因素相关。然而,在首次就诊时预测角度进展具有挑战性。

方法

在2011年7月至2023年2月于单一机构接受治疗的女性AIS患者中,研究了1119例病例。在首次和末次就诊时收集患者数据,包括基于前后位和侧位全脊柱X光片的人口统计学和影像学数据。根据治疗计划,末次就诊的定义有所不同。对于计划进行手术或支具治疗的患者,末次就诊发生在这些干预措施之前。对于其他患者,是在年满18岁之前的最后一次就诊。角度进展定义为末次就诊时近端胸椎(PT)、主胸椎(MT)和胸腰段/腰椎(TLL)每条曲线的Cobb角大于25度。使用Python中的PyCaret,采用ML算法为每种曲线类型(PT、MT和TLL)开发个体二元分类模型。探索并分析了多个模型,并根据曲线下面积(AUC)和召回率选择最佳模型。评估特征重要性以了解每个特征对模型预测的贡献。

结果

对于PT、MT和TLL进展,表现最佳的模型的AUC值分别为0.94、0.89和0.84,召回率分别为0.90、0.85和0.81。预测进展的最显著因素因每条曲线而异:PT为初始Cobb角,MT为月经初潮情况,TLL为Risser分级。

结论

本研究引入了一种基于ML的模型,该模型使用首次就诊时的简单数据来精确预测女性AIS患者的角度进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验