Suppr超能文献

机器学习基于矢状面平衡识别正常青少年脊柱的聚类。

Machine learning identifies clusters of the normal adolescent spine based on sagittal balance.

作者信息

Birhiray Dion G, Chilukuri Srikhar V, Witsken Caleb C, Wang Maggie, Scioscia Jacob P, Gehrchen Martin, Deveza Lorenzo R, Dahl Benny

机构信息

Georgetown University School of Medicine, Washington, D.C, USA.

Baylor College of Medicine, Houston, TX, USA.

出版信息

Spine Deform. 2025 Jan;13(1):89-99. doi: 10.1007/s43390-024-00952-6. Epub 2024 Aug 21.

Abstract

PURPOSE

This study applied a machine learning semi-supervised clustering approach to radiographs of adolescent sagittal spines from a single pediatric institution to identify patterns of sagittal alignment in the normal adolescent spine. We sought to explore the inherent variability found in adolescent sagittal alignment using machine learning to remove bias and determine whether clusters of sagittal alignment exist.

METHODS

Multiple semi-supervised machine learning clustering algorithms were applied to 111 normal adolescent sagittal spines. Sagittal parameters for resultant clusters were determined.

RESULTS

Machine learning analysis found that the spines did cluster into distinct groups with an optimal number of clusters ranging from 3 to 5. We performed an analysis on both 3 and 5-cluster groups. The 3-cluster groups analysis found good consistency between methods with 96 of 111, while the analysis of 5-cluster groups found consistency with 105 of 111 spines. When assessing for differences in sagittal parameters between the groups for both analyses, there were differences in T4-12 TK, L1-S1 LL, SS, SVA, PI-LL mismatch, and TPA. However, the only parameter that was statistically different for all groups was SVA.

CONCLUSIONS

Based on machine learning, the adolescent sagittal spine alignments do cluster into distinct groups. While there were distinguishing features with TK and LL, the most important parameter distinguishing these groups was SVA. Further studies may help to understand these findings in relation to spinal deformities.

摘要

目的

本研究采用机器学习半监督聚类方法,对来自单一儿科机构的青少年矢状面脊柱X线片进行分析,以识别正常青少年脊柱矢状面排列模式。我们试图利用机器学习来消除偏差,探索青少年矢状面排列中存在的固有变异性,并确定矢状面排列是否存在聚类。

方法

将多种半监督机器学习聚类算法应用于111例正常青少年矢状面脊柱。确定所得聚类的矢状面参数。

结果

机器学习分析发现,脊柱确实聚为不同的组,最佳聚类数为3至5个。我们对3聚类组和5聚类组都进行了分析。3聚类组分析发现,111例中有96例方法间一致性良好,而5聚类组分析发现,111例脊柱中有105例一致性良好。在评估两组矢状面参数差异时,两种分析中T4 - 12胸椎后凸(TK)、L1 - S1腰椎前凸(LL)、骶骨倾斜角(SS)、矢状面垂直轴(SVA)、骨盆入射角与腰椎前凸不匹配(PI - LL mismatch)和胸椎后凸角(TPA)均存在差异。然而,所有组中唯一具有统计学差异的参数是SVA。

结论

基于机器学习,青少年矢状面脊柱排列确实聚为不同的组。虽然TK和LL有显著特征,但区分这些组的最重要参数是SVA。进一步的研究可能有助于理解这些发现与脊柱畸形的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验