Suppr超能文献

3D打印中空微针阵列介导递送的细胞活力几何决定因素

GEOMETRIC DETERMINANTS OF CELL VIABILITY FOR 3D-PRINTED HOLLOW MICRONEEDLE ARRAY-MEDIATED DELIVERY.

作者信息

Sarker Sunandita, Wang Jinghui, Shah Shrey A, Jewell Christopher M, Rand-Yadin Kinneret, Janowski Miroslaw, Walczak Piotr, Liang Yajie, Sochol Ryan D

机构信息

Department of Mechanical Engineering, University of Maryland, College Park, MD, USA.

Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.

出版信息

Proc IEEE Int Conf Micro Electro Mech Syst. 2024 Jan;2024:429-432. doi: 10.1109/mems58180.2024.10439381. Epub 2024 Feb 22.

Abstract

A wide range of emerging biomedical applications and clinical interventions rely on the ability to deliver living cells hollow, high-aspect-ratio microneedles. Recently, microneedle arrays (MNA) have gained increasing interest due to inherent benefits for drug delivery; however, studies exploring the potential to harness such advantages for cell delivery have been impeded due to the difficulties in manufacturing high-aspect-ratio MNAs suitable for delivering mammalian cells. To bypass these challenges, here we leverage and extend our previously reported hybrid additive manufacturing (or "three-dimensional (3D) printing) strategy-., the combined the "Vat Photopolymerization (VPP)" technique, "Liquid Crystal Display (LCD)" 3D printing with "Two-Photon Direct Laser Writing (DLW)"-to 3D print hollow MNAs that are suitable for cell delivery investigations. Specifically, we 3D printed four sets of 650 m-tall MNAs corresponding to needle-specific inner diameters (IDs) of 25 m, 50 m, 75 m, and 100 m, and then examined the effects of these MNAs on the post-delivery viability of both dendritic cells (DCs) and HEK293 cells. Experimental results revealed that the 25 m-ID case led to a statistically significant reduction in post-MNA-delivery cell viability for both cell types; however, MNAs with needle-specific IDs ≥ 50 m were statistically indistinguishable from one another as well as conventional 32G single needles, thereby providing an important benchmark for MNA-mediated cell delivery.

摘要

广泛的新兴生物医学应用和临床干预依赖于递送活细胞的能力。中空、高纵横比的微针具有这种能力。最近,微针阵列(MNA)因其在药物递送方面的固有优势而越来越受到关注;然而,由于制造适合递送哺乳动物细胞的高纵横比MNA存在困难,探索利用这些优势进行细胞递送的研究受到了阻碍。为了克服这些挑战,我们在此利用并扩展了我们先前报道的混合增材制造(或“三维(3D)打印”)策略——将“光固化聚合(VPP)”技术、“液晶显示器(LCD)”3D打印与“双光子直接激光写入(DLW)”相结合——来3D打印适合细胞递送研究的中空MNA。具体而言,我们3D打印了四组高度为650μm的MNA,其针特定内径(ID)分别为25μm、50μm、75μm和100μm,然后研究了这些MNA对树突状细胞(DC)和HEK293细胞递送后活力的影响。实验结果表明,25μm内径的情况导致两种细胞类型在MNA递送后细胞活力均有统计学上的显著降低;然而,针特定内径≥50μm的MNA彼此之间以及与传统的32G单针在统计学上没有区别,从而为MNA介导的细胞递送提供了一个重要的基准。

相似文献

1
GEOMETRIC DETERMINANTS OF CELL VIABILITY FOR 3D-PRINTED HOLLOW MICRONEEDLE ARRAY-MEDIATED DELIVERY.
Proc IEEE Int Conf Micro Electro Mech Syst. 2024 Jan;2024:429-432. doi: 10.1109/mems58180.2024.10439381. Epub 2024 Feb 22.
2
3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy.
Adv Mater Technol. 2023 Mar 10;8(5). doi: 10.1002/admt.202201641. Epub 2023 Feb 5.
3
The Effect of 3D Printing Tilt Angle on the Penetration of 3D-Printed Microneedle Arrays.
Micromachines (Basel). 2023 May 30;14(6):1157. doi: 10.3390/mi14061157.
4
A 3D-MICROPRINTED COAXIAL NOZZLE FOR FABRICATING LONG, FLEXIBLE MICROFLUIDIC TUBING.
Proc IEEE Int Conf Micro Electro Mech Syst. 2024 Jan;2024:1174-1177. doi: 10.1109/mems58180.2024.10439296. Epub 2024 Feb 22.
5
Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate.
Drug Deliv Transl Res. 2022 May;12(5):1195-1208. doi: 10.1007/s13346-021-01006-4. Epub 2021 May 22.
6
3D-Printed Hydrogel-Filled Microneedle Arrays.
Adv Healthc Mater. 2021 Jul;10(13):e2001922. doi: 10.1002/adhm.202001922. Epub 2021 May 29.
7
Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination.
J Control Release. 2020 Jan 10;317:336-346. doi: 10.1016/j.jconrel.2019.11.023. Epub 2019 Nov 19.
8
Optimization of Printing Parameters for Digital Light Processing 3D Printing of Hollow Microneedle Arrays.
Pharmaceutics. 2021 Nov 2;13(11):1837. doi: 10.3390/pharmaceutics13111837.
9
Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing.
Microsyst Nanoeng. 2019 Sep 9;5:42. doi: 10.1038/s41378-019-0088-8. eCollection 2019.
10
Exploiting Unique Features of Microneedles to Modulate Immunity.
Adv Mater. 2023 Dec;35(52):e2302410. doi: 10.1002/adma.202302410. Epub 2023 Nov 5.

引用本文的文献

1
Hollow microneedles as a flexible dosing control solution for transdermal drug delivery.
Mater Today Bio. 2025 Apr 10;32:101754. doi: 10.1016/j.mtbio.2025.101754. eCollection 2025 Jun.
2
Direct laser writing-enabled 3D printing strategies for microfluidic applications.
Lab Chip. 2024 Apr 30;24(9):2371-2396. doi: 10.1039/d3lc00743j.

本文引用的文献

1
Modern microelectronics and microfluidics on microneedles.
Analyst. 2023 Sep 25;148(19):4591-4615. doi: 10.1039/d3an01045g.
2
Exploiting Unique Features of Microneedles to Modulate Immunity.
Adv Mater. 2023 Dec;35(52):e2302410. doi: 10.1002/adma.202302410. Epub 2023 Nov 5.
3
3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy.
Adv Mater Technol. 2023 Mar 10;8(5). doi: 10.1002/admt.202201641. Epub 2023 Feb 5.
5
3D-Printed Integrated Ultrasonic Microneedle Array for Rapid Transdermal Drug Delivery.
Mol Pharm. 2022 Sep 5;19(9):3314-3322. doi: 10.1021/acs.molpharmaceut.2c00466. Epub 2022 Aug 10.
7
Mapping the Mechanical and Immunological Profiles of Polymeric Microneedles to Enable Vaccine and Immunotherapy Applications.
Front Immunol. 2022 Mar 14;13:843355. doi: 10.3389/fimmu.2022.843355. eCollection 2022.
8
Biodegradable silicon nanoneedles for ocular drug delivery.
Sci Adv. 2022 Apr;8(13):eabn1772. doi: 10.1126/sciadv.abn1772. Epub 2022 Mar 30.
9
Recent Progress in Microneedles-Mediated Diagnosis, Therapy, and Theranostic Systems.
Adv Healthc Mater. 2022 May;11(10):e2102547. doi: 10.1002/adhm.202102547. Epub 2022 Jan 27.
10
Fully 3D-printed soft robots with integrated fluidic circuitry.
Sci Adv. 2021 Jul 14;7(29). doi: 10.1126/sciadv.abe5257. Print 2021 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验