Suppr超能文献

3D 打印水凝胶填充微针阵列。

3D-Printed Hydrogel-Filled Microneedle Arrays.

机构信息

Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68588, USA.

Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA.

出版信息

Adv Healthc Mater. 2021 Jul;10(13):e2001922. doi: 10.1002/adhm.202001922. Epub 2021 May 29.

Abstract

Microneedle arrays (MNAs) have been used for decades to deliver drugs transdermally and avoid the obstacles of other delivery routes. Hydrogels are another popular method for delivering therapeutics because they provide tunable, controlled release of their encapsulated payload. However, hydrogels are not strong or stiff, and cannot be formed into constructs that penetrate the skin. Accordingly, it has so far been impossible to combine the transdermal delivery route provided by MNAs with the therapeutic encapsulation potential of hydrogels. To address this challenge, a low cost and simple, but robust, strategy employing MNAs is developed. These MNAs are formed from a rigid outer layer, 3D printed onto a conformal backing, and filled with drug-eluting hydrogels. Microneedles of different lengths are fabricated on a single patch, facilitating the delivery of various agents to different tissue depths. In addition to spatial distribution, temporal release kinetics can be controlled by changing the hydrogel composition or the needles' geometry. As a proof-of-concept, MNAs are used for the delivery of vascular endothelial growth factor (VEGF). Application of the rigid, resin-based outer layer allows the use of hydrogels regardless of their mechanical properties and makes these multicomponent MNAs suitable for a range of drug delivery applications.

摘要

微针阵列 (MNAs) 已被用于数十年的经皮给药,以避免其他给药途径的障碍。水凝胶是另一种用于输送治疗剂的常用方法,因为它们可以提供封装有效载荷的可调、控制释放。然而,水凝胶不强硬,不能形成穿透皮肤的结构。因此,迄今为止,不可能将 MNAs 提供的经皮给药途径与水凝胶的治疗封装潜力结合起来。为了解决这一挑战,开发了一种低成本、简单但坚固的采用 MNAs 的策略。这些 MNAs 由刚性外层组成,通过 3D 打印到贴合衬垫上,并填充有药物洗脱水凝胶。在单个贴片上制造不同长度的微针,便于将各种药剂输送到不同的组织深度。除了空间分布外,通过改变水凝胶组成或针的几何形状还可以控制时间释放动力学。作为概念验证,MNAs 用于血管内皮生长因子 (VEGF) 的递送。刚性树脂基外层的应用允许使用水凝胶,而不受其机械性能的影响,这使得这些多组分 MNAs 适用于多种药物输送应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验