Young Olivia M, Felix Bailey M, Fuge Mark D, Krieger Axel, Sochol Ryan D
Department of Mechanical Engineering, University of Maryland, College Park, MD, USA.
Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
Proc IEEE Int Conf Micro Electro Mech Syst. 2024 Jan;2024:1174-1177. doi: 10.1109/mems58180.2024.10439296. Epub 2024 Feb 22.
A variety of emerging applications, particularly those in medical and soft robotics fields, are predicated on the ability to fabricate long, flexible meso/microfluidic tubing with high customization. To address this need, here we present a hybrid additive manufacturing (or "three-dimensional (3D) printing") strategy that involves three key steps: () using the "Vat Photopolymerization (VPP) technique, "Liquid-Crystal Display (LCD)" 3D printing to print a bulk microfluidic device with three inlets and three concentric outlets; () using "Two-Photon Direct Laser Writing (DLW)" to 3D microprint a coaxial nozzle directly atop the concentric outlets of the bulk microdevice, and then () extruding paraffin oil and a liquid-phase photocurable resin through the coaxial nozzle and into a polydimethylsiloxane (PDMS) channel for UV exposure, ultimately producing the desired tubing. In addition to fabricating the resulting tubing-composed of polymerized photomaterial-at arbitrary lengths (., > 10 cm), the distinct input pressures can be adjusted to tune the inner diameter (ID) and outer diameter (OD) of the fabricated tubing. For example, experimental results revealed that increasing the driving pressure of the liquid-phase photomaterial from 50 kPa to 100 kPa led to fluidic tubing with IDs and ODs of 291±99 m and 546±76 m up to 741±31 m and 888±39 m, respectively. Furthermore, preliminary results for DLW-printing a microfluidic "M" structure directly atop the tubing suggest that the tubing could be used for " DLW (DLW)" fabrication, which would further enhance the utility of the tubing.
各种新兴应用,特别是医学和软机器人领域的应用,都依赖于制造具有高度定制性的长而灵活的中观/微观流体管道的能力。为满足这一需求,我们在此提出一种混合增材制造(或“三维(3D)打印”)策略,该策略涉及三个关键步骤:(1)使用“光固化聚合(VPP)技术”,通过“液晶显示器(LCD)”3D打印来打印一个具有三个入口和三个同心出口的块状微流体装置;(2)使用“双光子直接激光写入(DLW)”在块状微装置的同心出口上方直接3D微打印一个同轴喷嘴,然后(3)将石蜡油和液相光固化树脂通过同轴喷嘴挤出并进入聚二甲基硅氧烷(PDMS)通道进行紫外线曝光,最终生产出所需的管道。除了能够制造任意长度(例如,>10厘米)的由聚合光材料组成的成品管道外,还可以调整不同的输入压力来调节所制造管道的内径(ID)和外径(OD)。例如,实验结果表明,将液相光材料的驱动压力从50 kPa增加到100 kPa,会使流体管道的内径和外径分别从291±99μm和546±76μm增加到741±31μm和888±39μm。此外,在管道上方直接进行DLW打印微流体“M”结构的初步结果表明,该管道可用于“DLW-on-DLW”制造,这将进一步提高管道的实用性。