Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, United States.
Department of Biostatistics, Yale University, New Haven, CT 06511, United States.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujae008.
Environmental epidemiologic studies routinely utilize aggregate health outcomes to estimate effects of short-term (eg, daily) exposures that are available at increasingly fine spatial resolutions. However, areal averages are typically used to derive population-level exposure, which cannot capture the spatial variation and individual heterogeneity in exposures that may occur within the spatial and temporal unit of interest (eg, within a day or ZIP code). We propose a general modeling approach to incorporate within-unit exposure heterogeneity in health analyses via exposure quantile functions. Furthermore, by viewing the exposure quantile function as a functional covariate, our approach provides additional flexibility in characterizing associations at different quantile levels. We apply the proposed approach to an analysis of air pollution and emergency department (ED) visits in Atlanta over 4 years. The analysis utilizes daily ZIP code-level distributions of personal exposures to 4 traffic-related ambient air pollutants simulated from the Stochastic Human Exposure and Dose Simulator. Our analyses find that effects of carbon monoxide on respiratory and cardiovascular disease ED visits are more pronounced with changes in lower quantiles of the population's exposure. Software for implement is provided in the R package nbRegQF.
环境流行病学研究通常利用综合健康结果来估计短期(例如,每日)暴露的影响,这些暴露可在越来越精细的空间分辨率下获得。然而,通常使用区域平均值来推导出人群水平的暴露量,这无法捕捉到在感兴趣的时空单元内(例如,在一天或邮政编码内)可能发生的暴露的空间变化和个体异质性。我们提出了一种通用的建模方法,通过暴露分位数函数将单位内暴露异质性纳入健康分析中。此外,通过将暴露分位数函数视为功能协变量,我们的方法在描述不同分位数水平的关联方面提供了更大的灵活性。我们将所提出的方法应用于亚特兰大四年内的空气污染和急诊部(ED)就诊的分析。该分析利用了从 Stochastic Human Exposure and Dose Simulator 模拟的每日邮政编码级别的个人暴露于 4 种与交通相关的环境空气污染物的分布。我们的分析发现,一氧化碳对呼吸和心血管疾病 ED 就诊的影响在人群暴露的较低分位数发生变化时更为明显。实现该方法的软件在 R 包 nbRegQF 中提供。