Suppr超能文献

贝叶斯框架将暴露不确定性纳入健康分析中,应用于空气污染和死产。

A Bayesian framework for incorporating exposure uncertainty into health analyses with application to air pollution and stillbirth.

机构信息

Emmett Interdisciplinary Program in Environment and Resources, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA.

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd., NE Atlanta, GA 30322, USA.

出版信息

Biostatistics. 2023 Dec 15;25(1):20-39. doi: 10.1093/biostatistics/kxac034.

Abstract

Studies of the relationships between environmental exposures and adverse health outcomes often rely on a two-stage statistical modeling approach, where exposure is modeled/predicted in the first stage and used as input to a separately fit health outcome analysis in the second stage. Uncertainty in these predictions is frequently ignored, or accounted for in an overly simplistic manner when estimating the associations of interest. Working in the Bayesian setting, we propose a flexible kernel density estimation (KDE) approach for fully utilizing posterior output from the first stage modeling/prediction to make accurate inference on the association between exposure and health in the second stage, derive the full conditional distributions needed for efficient model fitting, detail its connections with existing approaches, and compare its performance through simulation. Our KDE approach is shown to generally have improved performance across several settings and model comparison metrics. Using competing approaches, we investigate the association between lagged daily ambient fine particulate matter levels and stillbirth counts in New Jersey (2011-2015), observing an increase in risk with elevated exposure 3 days prior to delivery. The newly developed methods are available in the R package KDExp.

摘要

研究环境暴露与不良健康结果之间的关系通常依赖于两阶段统计建模方法,其中暴露在第一阶段建模/预测,并作为输入用于第二阶段单独拟合的健康结果分析。当估计相关联的内容时,这些预测中的不确定性经常被忽略,或者以过于简单的方式来解释。在贝叶斯框架下,我们提出了一种灵活的核密度估计 (KDE) 方法,用于充分利用第一阶段建模/预测的后验输出,在第二阶段对暴露与健康之间的关联进行准确推断,得出用于有效模型拟合的全条件分布,详细说明其与现有方法的联系,并通过模拟比较其性能。我们的 KDE 方法在几个设置和模型比较指标上都显示出了更好的性能。我们使用竞争方法,研究了新泽西州(2011-2015 年)滞后每日环境细颗粒物水平与死胎数量之间的关联,观察到在分娩前 3 天暴露水平升高会增加风险。新开发的方法可在 R 包 KDExp 中使用。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验