Hong Chong, Wu Yingdan, Wang Che, Ren Ziyu, Wang Chunxiang, Liu Zemin, Hu Wenqi, Sitti Metin
State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China.
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
Sci Robot. 2024 Mar 13;9(88):eadi5155. doi: 10.1126/scirobotics.adi5155.
Wireless millimeter-scale robots capable of navigating through fluid-flowing tubular structures hold substantial potential for inspection, maintenance, or repair use in nuclear, industrial, and medical applications. However, prevalent reliance on external powering constrains these robots' operational range and applicable environments. Alternatives with onboard powering must trade off size, functionality, and operation duration. Here, we propose a wireless millimeter-scale wheeled robot capable of using environmental flows to power and actuate its long-distance locomotion through complex pipelines. The flow-powering module can convert flow energy into mechanical energy, achieving an impeller speed of up to 9595 revolutions per minute, accompanied by an output power density of 11.7 watts per cubic meter and an efficiency of 33.7%. A miniature gearbox module can further transmit the converted mechanical energy into the robot's locomotion system, allowing the robot to move against water flow at an average rate of up to 1.05 meters per second. The robot's motion status (moving against/with flow or pausing) can be switched using an external magnetic field or an onboard mechanical regulator, contingent on different proposed control designs. In addition, we designed kirigami-based soft wheels for adaptive locomotion. The robot can move against flows of various substances within pipes featuring complex geometries and diverse materials. Solely powered by flow, the robot can transport cylindrical payloads with a diameter of up to 55% of the pipe's diameter and carry devices such as an endoscopic camera for pipeline inspection, a wireless temperature sensor for environmental temperature monitoring, and a leak-stopper shell for infrastructure maintenance.
能够在流体流动的管状结构中导航的无线毫米级机器人在核、工业和医疗应用中的检查、维护或修复用途方面具有巨大潜力。然而,普遍依赖外部供电限制了这些机器人的运行范围和适用环境。采用机载供电的替代方案必须在尺寸、功能和运行持续时间之间进行权衡。在此,我们提出一种无线毫米级轮式机器人,它能够利用环境流动来为其通过复杂管道的长距离移动提供动力并驱动。流动供电模块可将流动能量转化为机械能,实现叶轮转速高达每分钟9595转,输出功率密度为每立方米11.7瓦,效率为33.7%。一个微型齿轮箱模块可进一步将转换后的机械能传输到机器人的移动系统,使机器人能够以平均每秒1.05米的速度逆水流移动。根据不同的控制设计方案,机器人的运动状态(逆/顺流移动或暂停)可通过外部磁场或机载机械调节器进行切换。此外,我们设计了基于剪纸的软轮用于自适应移动。该机器人能够在具有复杂几何形状和不同材料的管道内逆各种物质的流动移动。仅由流动提供动力,该机器人能够运输直径达管道直径55%的圆柱形载荷,并携带诸如用于管道检查的内窥相机、用于环境温度监测的无线温度传感器以及用于基础设施维护的堵漏壳等设备。