State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Phytopathology. 2024 Jul;114(7):1612-1625. doi: 10.1094/PHYTO-12-23-0474-R. Epub 2024 Jul 3.
Unraveling the intricacies of soybean cyst nematode () race 4 resistance and susceptibility in soybean breeding lines-11-452 (highly resistant) and Dongsheng1 (DS1, highly susceptible)-was the focal point of this study. Employing cutting-edge N6-methyladenosine (m6A) and RNA sequencing techniques, we delved into the impact of m6A modification on gene expression and plant defense responses. Through the evaluation of nematode development in both resistant and susceptible roots, a pivotal time point (3 days postinoculation) for m6A methylation sequencing was identified. Our sequencing data exhibited robust statistics, successful soybean genome mapping, and prevalent m6A peak distributions, primarily in the 3' untranslated region and stop codon regions. Analysis of differential methylation peaks and differentially expressed genes revealed distinctive patterns between resistant and susceptible genotypes. In the highly resistant line (11-452), key resistance and defense-associated genes displayed increased expression coupled with inhibited methylation, encompassing crucial players such as R genes, receptor kinases, and transcription factors. Conversely, the highly susceptible DS1 line exhibited heightened expression correlated with decreased methylation in genes linked to susceptibility pathways, including Mildew Locus O-like proteins and regulatory elements affecting defense mechanisms. Genome-wide assessments, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and differential methylation peak/differentially expressed gene overlap emphasized the intricate interplay of m6A modifications, alternative splicing, microRNA, and gene regulation in plant defense. Protein-protein interaction networks illuminated defense-pivotal genes, delineating divergent mechanisms in resistant and susceptible responses. This study sheds light on the dynamic correlation between methylation, splicing, and gene expression, providing profound insights into plant responses to nematode infection.
本研究聚焦于解析大豆胞囊线虫()第 4 生理小种抗性和感病大豆品系 11-452(高抗)和东生 1(DS1,高感)的复杂性。本研究采用前沿的 N6-甲基腺苷(m6A)和 RNA 测序技术,深入研究了 m6A 修饰对基因表达和植物防御反应的影响。通过评估抗性和感病根中线虫的发育,确定了 m6A 甲基化测序的关键时间点(接种后 3 天)。我们的测序数据具有强大的统计数据、成功的大豆基因组映射和普遍的 m6A 峰分布,主要集中在 3'非翻译区和终止密码子区域。差异甲基化峰和差异表达基因分析揭示了抗性和感病基因型之间的独特模式。在高抗品系(11-452)中,关键的抗性和防御相关基因的表达增加伴随着甲基化抑制,包括 R 基因、受体激酶和转录因子等重要参与者。相反,高感品系 DS1 中与感病途径相关的基因表现出更高的表达与甲基化降低,包括白粉病位点 O 类似蛋白和影响防御机制的调节元件。全基因组评估、基因本体论和京都基因与基因组百科全书分析以及差异甲基化峰/差异表达基因重叠强调了 m6A 修饰、可变剪接、microRNA 和基因调控在植物防御中的复杂相互作用。蛋白质-蛋白质互作网络阐明了防御关键基因,描绘了抗性和感病反应中的不同机制。本研究揭示了甲基化、剪接和基因表达之间的动态相关性,为深入了解植物对线虫感染的反应提供了深刻的见解。