Matthews Benjamin F, Beard Hunter, Brewer Eric, Kabir Sara, MacDonald Margaret H, Youssef Reham M
United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.
BMC Plant Biol. 2014 Apr 16;14:96. doi: 10.1186/1471-2229-14-96.
Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction.
Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control).
Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.
利用模式植物拟南芥开展的大量研究,旨在阐明植物防御信号传导和通路网络,结果表明水杨酸(SA)是触发植物对活体营养型和半活体营养型病原体防御反应的关键激素,而茉莉酸(JA)及其衍生物对于植物对坏死营养型病原体的防御反应至关重要。有几份报告表明,SA会限制线虫繁殖。
在此,我们将从拟南芥研究中获得的知识转化应用于大豆。我们研究了31个编码SA和JA合成及信号传导重要组分的拟南芥基因赋予大豆胞囊线虫(SCN:大豆异皮线虫)抗性的能力。我们证明,在复合植物的转基因大豆根中过表达31个拟南芥基因中的3个,可使SCN形成的胞囊数量减少至对照根上发现的胞囊数量的50%以下,即AtNPR1(33%)、AtTGA2(38%)和AtPR - 5(38%)。另外3个拟南芥基因可使SCN胞囊数量减少40%或更多:AtACBP3(为对照值的53%)、AtACD2(55%)和AtCM - 3(57%)。与对照相比,其他影响较小或无影响的基因包括AtEDS5(77%)、AtNDR1(82%)、AtEDS1(107%)和AtPR - 1(80%)。AtDND1的过表达大大增加了易感性,表现为SCN胞囊数量大幅增加(为对照的175%)。
从模式植物拟南芥研究中获得的病原体防御系统知识,可通过直接过表达拟南芥基因直接转化应用于大豆。当编码参与SA调节、合成和信号传导的特定组分的基因AtNPR1、AtGA2和AtPR - 5在大豆根中过表达时,对SCN的抗性增强。这证明了一些拟南芥基因与大豆的功能兼容性,并鉴定出可用于培育对线虫抗性的基因。