Suppr超能文献

通过整合响应面法和人工神经网络提高糙皮侧耳菌丝体生物量和胞外多糖的产量。

Enhanced production of mycelium biomass and exopolysaccharides of Pleurotus ostreatus by integrating response surface methodology and artificial neural network.

机构信息

Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.

Department of Mechanical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.

出版信息

Bioresour Technol. 2024 May;399:130577. doi: 10.1016/j.biortech.2024.130577. Epub 2024 Mar 11.

Abstract

This study aimed to enhance the production of mycelium biomass and exopolysaccharides (EPS) of Pleurotus ostreatus in submerged fermentation. Response Surface Methodology (RSM)sought to optimize culture conditions, whereas Artificial Neural Network (ANN)aimed to predict the mycelium biomass and EPS. After optimization of RSM model conditions, the maximum biomass (36.45 g/L) and EPS (6.72 g/L) were obtained at the optimum temperature of 22.9 °C, pH 5.6, and agitation of 138.9 rpm. Further, the Genetic Algorithm (GA) was employed to optimize the cultivation conditions in order to maximize the mycelium biomass and EPS production. The ANN model with an optimized network structure gave the coefficient of determination (R) value of 0.99 and the least mean squared error of 1.9 for the validation set. In the end, a graphical user interface was developed to predict mycelium biomass and EPS production.

摘要

本研究旨在提高平菇(Pleurotus ostreatus)液体深层发酵中的菌丝体生物量和胞外多糖(EPS)的产量。响应面法(RSM)旨在优化培养条件,而人工神经网络(ANN)旨在预测菌丝体生物量和 EPS。在优化 RSM 模型条件后,在最适温度 22.9°C、pH 值 5.6 和搅拌速度 138.9 rpm 下可获得最大生物量(36.45 g/L)和 EPS(6.72 g/L)。进一步,遗传算法(GA)被用于优化培养条件,以最大化菌丝体生物量和 EPS 的产量。优化网络结构后的 ANN 模型对验证集的决定系数(R)值为 0.99,均方误差最小为 1.9。最后,开发了一个图形用户界面来预测菌丝体生物量和 EPS 的产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验