Suppr超能文献

重组疫苗抗原HpaA培养基的建模与优化

Modeling and optimization of culture media for recombinant vaccine antigen HpaA.

作者信息

Tan Runqing, Zhou Song, Sun Min, Liu Yu, Ni Xiumei, He Jin, Guo Gang, Liu Kaiyun

机构信息

Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Front Bioeng Biotechnol. 2024 Dec 4;12:1499940. doi: 10.3389/fbioe.2024.1499940. eCollection 2024.

Abstract

INTRODUCTION

() infection represents a significant global health concern, exacerbated by the emergence of drug-resistant strains resulting from conventional antibiotic treatments. Consequently, the development of vaccines with both preventive and therapeutic properties has become crucial in addressing infections. The adhesin protein HpaA has demonstrated strong immunogenicity across various adjuvants and dosage forms, positioning it as a key candidate antigen for recombinant subunit vaccines against . Optimizing fermentation culture conditions is an effective strategy to enhance product yield and lower production costs. However, to date, there has been no systematic investigation into methods for improving the fermentation yield of HpaA. Enhancing the fermentation medium to increase HpaA yield holds significant potential for application and economic benefits in the prevention and detection of infection.

METHODS

To achieve a stable and high-yielding vaccine antigen HpaA, this study constructed recombinant expressing HpaA. The impact of fermentation medium components on the rHpaA yield was assessed using a one-factor-at-a-time approach alongside Plackett-Burman factorial experiments. Optimal conditions were effectively identified through response surface methodology (RSM) and artificial neural network (ANN) statistical computational models. The antigenicity and immunogenicity of the purified rHpaA were validated through immunization of mice, followed by Western Blot analysis and serum IgG ELISA quantification.

RESULTS

Glucose, yeast extract, yeast peptone, NHCl and CaCl all contributed to the production of rHpaA, with glucose, yeast extract, and NHCl demonstrating particularly significant effects. The artificial neural network linked genetic algorithm (ANN-GA) model exhibited superior predictive accuracy, achieving a rHpaA yield of 0.61 g/L, which represents a 93.2% increase compared to the initial medium. Animal immunization experiments confirmed that rHpaA possesses good antigenicity and immunogenicity.

DISCUSSION

This study pioneers the statistical optimization of culture media to enhance rHpaA production, thereby supporting its large-scale application in vaccines. Additionally, it highlights the advantages of the ANN-GA approach in bioprocess optimization.

摘要

引言

()感染是一个重大的全球健康问题,传统抗生素治疗导致的耐药菌株的出现使其更加恶化。因此,开发具有预防和治疗特性的疫苗对于应对()感染至关重要。黏附素蛋白HpaA在各种佐剂和剂型中均表现出强大的免疫原性,使其成为抗()重组亚单位疫苗的关键候选抗原。优化发酵培养条件是提高产品产量和降低生产成本的有效策略。然而,迄今为止,尚未对提高HpaA发酵产量的方法进行系统研究。强化发酵培养基以提高HpaA产量在()感染的预防和检测方面具有巨大的应用潜力和经济效益。

方法

为了获得稳定高产的()疫苗抗原HpaA,本研究构建了表达HpaA的重组()。采用单因素法和Plackett-Burman析因实验评估发酵培养基成分对rHpaA产量的影响。通过响应面法(RSM)和人工神经网络(ANN)统计计算模型有效确定了最佳条件。通过对小鼠进行免疫,随后进行蛋白质免疫印迹分析和血清IgG ELISA定量,验证了纯化的rHpaA的抗原性和免疫原性。

结果

葡萄糖、酵母提取物、酵母蛋白胨、NH₄Cl和CaCl₂均对rHpaA的产生有贡献,其中葡萄糖、酵母提取物和NH₄Cl的影响尤为显著。人工神经网络连接遗传算法(ANN-GA)模型表现出卓越的预测准确性,rHpaA产量达到0.61 g/L,与初始培养基相比提高了93.2%。动物免疫实验证实rHpaA具有良好的抗原性和免疫原性。

讨论

本研究率先对培养基进行统计优化以提高rHpaA产量,从而支持其在()疫苗中的大规模应用。此外,它突出了ANN-GA方法在生物过程优化中的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ca/11652157/21cd4ab6a073/fbioe-12-1499940-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验