Wright K, Beck K M, Debnath S, Amini J M, Nam Y, Grzesiak N, Chen J-S, Pisenti N C, Chmielewski M, Collins C, Hudek K M, Mizrahi J, Wong-Campos J D, Allen S, Apisdorf J, Solomon P, Williams M, Ducore A M, Blinov A, Kreikemeier S M, Chaplin V, Keesan M, Monroe C, Kim J
IonQ, Inc., College Park, MD, 20740, USA.
Joint Quantum Institute and Department of Physics, University of Maryland, College Park, MD, 20742, USA.
Nat Commun. 2019 Nov 29;10(1):5464. doi: 10.1038/s41467-019-13534-2.
The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 Yb ions. We demonstrate average single-qubit gate fidelities of 99.5[Formula: see text], average two-qubit-gate fidelities of 97.5[Formula: see text], and SPAM errors of 0.7[Formula: see text]. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78[Formula: see text] and 35[Formula: see text], respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.
在过去20年里,量子计算领域已从概念发展到演示设备。通用量子计算在解决具有科学和商业意义的问题时具有高效性,比如对大数字进行因式分解、搜索数据库、模拟量子物理中难以处理的模型以及优化复杂成本函数。在此,我们展示了一个由13个镱离子组成的俘获离子系统中的11比特全连接可编程量子计算机。我们演示了单比特门平均保真度为99.5%,双比特门平均保真度为97.5%,以及单比特辅助操作和测量(SPAM)误差为0.7%。为了说明这个通用平台的能力,并为与类似规模的设备进行比较提供基础,我们将伯恩斯坦 - 瓦齐拉尼算法和隐藏移位算法编译成本地门,并在硬件上执行,平均成功率分别为78%和35%。这些算法是任何类型量子硬件的优秀基准,并表明我们的系统性能优于所有其他现有硬件。